/usr/include/libwildmagic/Wm5PlanarGraph.inl is in libwildmagic-dev 5.13-1ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 | // Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.0 (2010/01/01)
//----------------------------------------------------------------------------
template <typename Point2>
PlanarGraph<Point2>::PlanarGraph ()
{
}
//----------------------------------------------------------------------------
template <typename Point2>
PlanarGraph<Point2>::~PlanarGraph ()
{
typename Vertices::iterator iter = mVertices.begin();
typename Vertices::iterator end = mVertices.end();
for (/**/; iter != end; ++iter)
{
Vertex* vertex = iter->second;
delete0(vertex);
}
}
//----------------------------------------------------------------------------
template <typename Point2>
const typename PlanarGraph<Point2>::Vertices&
PlanarGraph<Point2>::GetVertices () const
{
return mVertices;
}
//----------------------------------------------------------------------------
template <typename Point2>
const typename PlanarGraph<Point2>::Vertex*
PlanarGraph<Point2>::GetVertex (int index) const
{
typename Vertices::const_iterator iter = mVertices.find(index);
return (iter != mVertices.end() ? iter->second : 0);
}
//----------------------------------------------------------------------------
template <typename Point2>
bool PlanarGraph<Point2>::InsertVertex (const Point2& position, int index)
{
typename Vertices::iterator iter = mVertices.find(index);
if (iter != mVertices.end())
{
return false;
}
// Insert the vertex into the vertex set. The adjacency array has already
// been initialized to empty.
Vertex* vertex = new0 Vertex(position, index);
mVertices[index] = vertex;
return true;
}
//----------------------------------------------------------------------------
template <typename Point2>
bool PlanarGraph<Point2>::RemoveVertex (int index)
{
typename Vertices::iterator iter = mVertices.find(index);
if (iter != mVertices.end())
{
Vertex* vertex = iter->second;
if (vertex->Adjacent.size() == 0)
{
mVertices.erase(iter);
delete0(vertex);
return true;
}
}
return false;
}
//----------------------------------------------------------------------------
template <typename Point2>
const typename PlanarGraph<Point2>::Edges&
PlanarGraph<Point2>::GetEdges () const
{
return mEdges;
}
//----------------------------------------------------------------------------
template <typename Point2>
bool PlanarGraph<Point2>::InsertEdge (int index0, int index1)
{
// Look up the vertices. If one or the other does not exist, there is
// nothing to do. The typecast supports conceptual constness from the
// users perspective.
Vertex* vertex0 = (Vertex*)GetVertex(index0);
if (!vertex0)
{
return false;
}
Vertex* vertex1 = (Vertex*)GetVertex(index1);
if (!vertex1)
{
return false;
}
EdgeKey eKey(index0, index1);
std::map<EdgeKey,bool>::iterator iter = mEdges.find(eKey);
if (iter == mEdges.end())
{
// The edge does not exist, insert it into the set. The edge is
// tagged as "not a cycle".
mEdges[eKey] = false;
// Update the vertex-adjacency information. The graph is undirected,
// so each vertex must know about the other.
vertex0->Insert(vertex1);
vertex1->Insert(vertex0);
return true;
}
return false;
}
//----------------------------------------------------------------------------
template <typename Point2>
bool PlanarGraph<Point2>::RemoveEdge (int index0, int index1)
{
// Look up the vertices. If one or the other does not exist, there is
// nothing to do. The typecast supports conceptual constness from the
// users perspective.
Vertex* vertex0 = (Vertex*)GetVertex(index0);
if (!vertex0)
{
return false;
}
Vertex* vertex1 = (Vertex*)GetVertex(index1);
if (!vertex1)
{
return false;
}
EdgeKey eKey(index0, index1);
std::map<EdgeKey,bool>::iterator iter = mEdges.find(eKey);
if (iter != mEdges.end())
{
// The edge exists, remove it from the set.
mEdges.erase(iter);
// Update the vertex-adjacency information. The graph is undirected,
// so each vertex knows about the other.
vertex0->Remove(vertex1);
vertex1->Remove(vertex0);
return true;
}
return false;
}
//----------------------------------------------------------------------------
template <typename Point2>
void PlanarGraph<Point2>::ExtractPrimitives (
std::vector<Primitive*>& primitives)
{
// Create a heap of vertices sorted lexicographically.
std::set<VertexPtr> heap;
typename Vertices::iterator iter = mVertices.begin();
typename Vertices::iterator end = mVertices.end();
for (/**/; iter != end; ++iter)
{
heap.insert(iter->second);
}
while (!heap.empty())
{
// Get the vertex of minimum x-value.
VertexPtr VPtr = *heap.begin();
Vertex* V0 = (Vertex*)VPtr;
if (V0->Adjacent.size() == 0)
{
ExtractIsolatedVertex(V0, heap, primitives);
}
else if (V0->Adjacent.size() == 1)
{
ExtractFilament(V0, V0->Adjacent[0], heap, primitives);
}
else
{
// The primitive can be a filament or a minimal cycle.
ExtractPrimitive(V0, heap, primitives);
}
}
}
//----------------------------------------------------------------------------
template <typename Point2>
void PlanarGraph<Point2>::SetCycleEdge (int index0, int index1,
bool cycleEdge)
{
EdgeKey eKey(index0, index1);
typename Edges::iterator iter = mEdges.find(eKey);
if (iter != mEdges.end())
{
iter->second = cycleEdge;
}
}
//----------------------------------------------------------------------------
template <typename Point2>
bool PlanarGraph<Point2>::GetCycleEdge (int index0, int index1) const
{
EdgeKey eKey(index0, index1);
typename Edges::const_iterator iter = mEdges.find(eKey);
if (iter != mEdges.end())
{
return iter->second;
}
return false;
}
//----------------------------------------------------------------------------
template <typename Point2>
void PlanarGraph<Point2>::ExtractIsolatedVertex (Vertex* V0,
std::set<VertexPtr>& heap, std::vector<Primitive*>& primitives)
{
Primitive* primitive = new0 Primitive(PT_ISOLATED_VERTEX);
primitive->Sequence.push_back(std::make_pair(V0->Position, V0->Index));
heap.erase(V0);
RemoveVertex(V0->Index);
primitives.push_back(primitive);
}
//----------------------------------------------------------------------------
template <typename Point2>
void PlanarGraph<Point2>::ExtractFilament (Vertex* V0, Vertex* V1,
std::set<VertexPtr>& heap, std::vector<Primitive*>& primitives)
{
// (V0,V1) is the first edge of the purported filament.
assertion(V0->Adjacent.size() != 2, "Unexpected condition\n");
if (GetCycleEdge(V0->Index, V1->Index))
{
// The edge is from an earlier visited minimal cycle. Delete the
// purported filament because it is an imposter.
if (V0->Adjacent.size() >= 3)
{
// V0 is a branch point. Break the connection.
RemoveEdge(V0->Index, V1->Index);
V0 = V1;
if (V0->Adjacent.size() == 1)
{
V1 = V0->Adjacent[0];
}
}
while (V0->Adjacent.size() == 1)
{
V1 = V0->Adjacent[0];
if (GetCycleEdge(V0->Index, V1->Index))
{
heap.erase(V0);
RemoveEdge(V0->Index, V1->Index);
RemoveVertex(V0->Index);
V0 = V1;
}
else
{
break;
}
}
if (V0->Adjacent.size() == 0)
{
heap.erase(V0);
RemoveVertex(V0->Index);
}
}
else
{
// A real filament has been found.
Primitive* primitive = new0 Primitive(PT_FILAMENT);
if (V0->Adjacent.size() >= 3)
{
// V0 is a branch point. Store it and break the connection.
primitive->Sequence.push_back(
std::make_pair(V0->Position, V0->Index));
RemoveEdge(V0->Index, V1->Index);
V0 = V1;
if (V0->Adjacent.size() == 1)
{
V1 = V0->Adjacent[0];
}
}
while (V0->Adjacent.size() == 1)
{
V1 = V0->Adjacent[0];
primitive->Sequence.push_back(
std::make_pair(V0->Position, V0->Index));
heap.erase(V0);
RemoveEdge(V0->Index, V1->Index);
RemoveVertex(V0->Index);
V0 = V1;
}
primitive->Sequence.push_back(
std::make_pair(V0->Position, V0->Index));
if (V0->Adjacent.size() == 0)
{
heap.erase(V0);
RemoveVertex(V0->Index);
}
primitives.push_back(primitive);
}
}
//----------------------------------------------------------------------------
template <typename Point2>
void PlanarGraph<Point2>::ExtractPrimitive (Vertex* V0,
std::set<VertexPtr>& heap, std::vector<Primitive*>& primitives)
{
std::set<Vertex*> visited;
std::vector<std::pair<Point2,int> > sequence;
sequence.push_back(std::make_pair(V0->Position, V0->Index));
Vertex* V1 = GetClockwiseMost(0,V0);
Vertex* VPrev = V0;
Vertex* VCurr = V1;
while (VCurr && VCurr != V0
&& visited.find(VCurr) == visited.end())
{
sequence.push_back(std::make_pair(VCurr->Position, VCurr->Index));
visited.insert(VCurr);
Vertex* VNext = GetCounterclockwiseMost(VPrev, VCurr);
VPrev = VCurr;
VCurr = VNext;
}
if (!VCurr)
{
// A filament has been found. It is not necessarily rooted at V0.
assertion(VPrev->Adjacent.size() == 1, "Unexpected condition\n");
ExtractFilament(VPrev, VPrev->Adjacent[0], heap, primitives);
}
else if (VCurr == V0)
{
// A minimal cycle has been found.
Primitive* primitive = new0 Primitive(PT_MINIMAL_CYCLE);
primitive->Sequence = sequence;
primitives.push_back(primitive);
// Mark the edges to indicate they are part of a cycle.
int sQuantity = (int)sequence.size();
for (int i0 = sQuantity-1, i1 = 0; i1 < sQuantity; i0 = i1++)
{
int iV0 = sequence[i0].second;
int iV1 = sequence[i1].second;
SetCycleEdge(iV0, iV1, true);
}
// Remove any vertices and edges not needed by other primitives.
RemoveEdge(V0->Index, V1->Index);
// Since the edges are marked, the calls to GetFilament in this block
// will only delete more edges but not create a primitive.
if (V0->Adjacent.size() == 1)
{
ExtractFilament(V0, V0->Adjacent[0], heap, primitives);
}
if (V1->Adjacent.size() == 1)
{
ExtractFilament(V1, V1->Adjacent[0], heap, primitives);
}
}
else // VCurr has been visited before
{
// A cycle has been found, but it is not guaranteed to be a minimal
// cycle. V0 is therefore part of a filament.
// Find a filament starting vertex.
while (V0->Adjacent.size() == 2)
{
if (V0->Adjacent[0] != V1)
{
V1 = V0;
V0 = V0->Adjacent[0];
}
else
{
V1 = V0;
V0 = V0->Adjacent[1];
}
}
// Create the primitive.
ExtractFilament(V0, V1, heap, primitives);
}
}
//----------------------------------------------------------------------------
template <typename Point2>
typename PlanarGraph<Point2>::Vertex*
PlanarGraph<Point2>::GetClockwiseMost (Vertex* VPrev, Vertex* VCurr)
{
Vertex* VNext = 0;
Point2 DCurr =
(VPrev ? VCurr->Position - VPrev->Position : Point2(0,-1));
Point2 DNext;
bool VCurrConvex = false;
for (int i = 0; i < (int)VCurr->Adjacent.size(); ++i)
{
// Get an adjacent vertex.
Vertex* VAdj = VCurr->Adjacent[i];
// No backtracking allowed.
if (VAdj == VPrev)
{
continue;
}
// The potential direction to move in.
Point2 DAdj = VAdj->Position - VCurr->Position;
// Select the first candidate.
if (!VNext)
{
VNext = VAdj;
DNext = DAdj;
VCurrConvex = (DNext[0]*DCurr[1] - DNext[1]*DCurr[0] <= 0);
continue;
}
// Update if the next candidate is clockwise of the current
// clockwise-most vertex.
if (VCurrConvex)
{
if (DCurr[0]*DAdj[1]-DCurr[1]*DAdj[0] < 0
|| DNext[0]*DAdj[1]-DNext[1]*DAdj[0] < 0)
{
VNext = VAdj;
DNext = DAdj;
VCurrConvex = (DNext[0]*DCurr[1] - DNext[1]*DCurr[0] <= 0);
}
}
else
{
if (DCurr[0]*DAdj[1]-DCurr[1]*DAdj[0] < 0
&& DNext[0]*DAdj[1]-DNext[1]*DAdj[0] < 0)
{
VNext = VAdj;
DNext = DAdj;
VCurrConvex = (DNext[0]*DCurr[1] - DNext[1]*DCurr[0] <= 0);
}
}
}
return VNext;
}
//----------------------------------------------------------------------------
template <typename Point2>
typename PlanarGraph<Point2>::Vertex*
PlanarGraph<Point2>::GetCounterclockwiseMost (Vertex* VPrev, Vertex* VCurr)
{
Vertex* VNext = 0;
Point2 DCurr =
(VPrev ? VCurr->Position - VPrev->Position : Point2(0,-1));
Point2 DNext;
bool VCurrConvex = false;
for (int i = 0; i < (int)VCurr->Adjacent.size(); ++i)
{
// Get an adjacent vertex.
Vertex* VAdj = VCurr->Adjacent[i];
// No backtracking allowed.
if (VAdj == VPrev)
{
continue;
}
// The potential direction to move in.
Point2 DAdj = VAdj->Position - VCurr->Position;
// Select the first candidate.
if (!VNext)
{
VNext = VAdj;
DNext = DAdj;
VCurrConvex = (DNext[0]*DCurr[1] - DNext[1]*DCurr[0] <= 0);
continue;
}
// Update if the next candidate is clockwise of the current
// clockwise-most vertex.
if (VCurrConvex)
{
if (DCurr[0]*DAdj[1]-DCurr[1]*DAdj[0] > 0
&& DNext[0]*DAdj[1]-DNext[1]*DAdj[0] > 0)
{
VNext = VAdj;
DNext = DAdj;
VCurrConvex = (DNext[0]*DCurr[1] - DNext[1]*DCurr[0] <= 0);
}
}
else
{
if (DCurr[0]*DAdj[1]-DCurr[1]*DAdj[0] > 0
|| DNext[0]*DAdj[1]-DNext[1]*DAdj[0] > 0)
{
VNext = VAdj;
DNext = DAdj;
VCurrConvex = (DNext[0]*DCurr[1] - DNext[1]*DCurr[0] <= 0);
}
}
}
return VNext;
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
// PlanarGraph::Vertex
//----------------------------------------------------------------------------
template <typename Point2>
PlanarGraph<Point2>::Vertex::Vertex (const Point2& position, int index)
:
Position(position),
Index(index)
{
}
//----------------------------------------------------------------------------
template <typename Point2>
PlanarGraph<Point2>::Vertex::~Vertex ()
{
}
//----------------------------------------------------------------------------
template <typename Point2>
void PlanarGraph<Point2>::Vertex::Insert (Vertex* adjacent)
{
Adjacent.push_back(adjacent);
}
//----------------------------------------------------------------------------
template <typename Point2>
void PlanarGraph<Point2>::Vertex::Remove (Vertex* adjacent)
{
// Maintain a compact array.
int numAdjacents = (int)Adjacent.size();
for (int i = 0; i < numAdjacents; ++i)
{
if (adjacent == Adjacent[i])
{
// Maintain a compact array.
--numAdjacents;
if (i < numAdjacents)
{
Adjacent[i] = Adjacent[numAdjacents];
}
Adjacent.pop_back();
return;
}
}
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
// PlanarGraph::Primitive
//----------------------------------------------------------------------------
template <typename Point2>
PlanarGraph<Point2>::Primitive::Primitive (PrimitiveType type)
:
Type(type)
{
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
// PlanarGraph::VertexPtr
//----------------------------------------------------------------------------
template <typename Point2>
PlanarGraph<Point2>::VertexPtr::VertexPtr (Vertex* vertex)
:
mVertex(vertex)
{
}
//----------------------------------------------------------------------------
template <typename Point2>
bool PlanarGraph<Point2>::VertexPtr::operator< (const VertexPtr& vertexPtr)
const
{
if (mVertex->Position[0] < vertexPtr.mVertex->Position[0])
{
return true;
}
if (mVertex->Position[0] > vertexPtr.mVertex->Position[0])
{
return false;
}
return mVertex->Position[1] < vertexPtr.mVertex->Position[1];
}
//----------------------------------------------------------------------------
|