/usr/include/libwildmagic/Wm5Vector2.inl is in libwildmagic-dev 5.13-1ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 | // Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.1 (2010/09/19)
//----------------------------------------------------------------------------
template <typename Real>
Vector2<Real>::Vector2 ()
{
// Uninitialized for performance in array construction.
}
//----------------------------------------------------------------------------
template <typename Real>
Vector2<Real>::Vector2 (const Vector2& vec)
{
mTuple[0] = vec.mTuple[0];
mTuple[1] = vec.mTuple[1];
}
//----------------------------------------------------------------------------
template <typename Real>
Vector2<Real>::Vector2 (const Tuple<2,Real>& tuple)
{
mTuple[0] = tuple[0];
mTuple[1] = tuple[1];
}
//----------------------------------------------------------------------------
template <typename Real>
Vector2<Real>::Vector2 (Real x, Real y)
{
mTuple[0] = x;
mTuple[1] = y;
}
//----------------------------------------------------------------------------
template <typename Real>
Vector2<Real>& Vector2<Real>::operator= (const Vector2& vec)
{
mTuple[0] = vec.mTuple[0];
mTuple[1] = vec.mTuple[1];
return *this;
}
//----------------------------------------------------------------------------
template <typename Real>
Vector2<Real>& Vector2<Real>::operator= (const Tuple<2,Real>& tuple)
{
mTuple[0] = tuple[0];
mTuple[1] = tuple[1];
return *this;
}
//----------------------------------------------------------------------------
template <typename Real>
inline Real Vector2<Real>::X () const
{
return mTuple[0];
}
//----------------------------------------------------------------------------
template <typename Real>
inline Real& Vector2<Real>::X ()
{
return mTuple[0];
}
//----------------------------------------------------------------------------
template <typename Real>
inline Real Vector2<Real>::Y () const
{
return mTuple[1];
}
//----------------------------------------------------------------------------
template <typename Real>
inline Real& Vector2<Real>::Y ()
{
return mTuple[1];
}
//----------------------------------------------------------------------------
template <typename Real>
inline Vector2<Real> Vector2<Real>::operator+ (const Vector2& vec) const
{
return Vector2
(
mTuple[0] + vec.mTuple[0],
mTuple[1] + vec.mTuple[1]
);
}
//----------------------------------------------------------------------------
template <typename Real>
inline Vector2<Real> Vector2<Real>::operator- (const Vector2& vec) const
{
return Vector2
(
mTuple[0] - vec.mTuple[0],
mTuple[1] - vec.mTuple[1]
);
}
//----------------------------------------------------------------------------
template <typename Real>
inline Vector2<Real> Vector2<Real>::operator* (Real scalar) const
{
return Vector2
(
scalar*mTuple[0],
scalar*mTuple[1]
);
}
//----------------------------------------------------------------------------
template <typename Real>
inline Vector2<Real> Vector2<Real>::operator/ (Real scalar) const
{
Vector2 result;
if (scalar != (Real)0)
{
Real invScalar = ((Real)1)/scalar;
result.mTuple[0] = invScalar*mTuple[0];
result.mTuple[1] = invScalar*mTuple[1];
}
else
{
result.mTuple[0] = Math<Real>::MAX_REAL;
result.mTuple[1] = Math<Real>::MAX_REAL;
}
return result;
}
//----------------------------------------------------------------------------
template <typename Real>
inline Vector2<Real> Vector2<Real>::operator- () const
{
return Vector2
(
-mTuple[0],
-mTuple[1]
);
}
//----------------------------------------------------------------------------
template <typename Real>
inline Vector2<Real>& Vector2<Real>::operator+= (const Vector2& vec)
{
mTuple[0] += vec.mTuple[0];
mTuple[1] += vec.mTuple[1];
return *this;
}
//----------------------------------------------------------------------------
template <typename Real>
inline Vector2<Real>& Vector2<Real>::operator-= (const Vector2& vec)
{
mTuple[0] -= vec.mTuple[0];
mTuple[1] -= vec.mTuple[1];
return *this;
}
//----------------------------------------------------------------------------
template <typename Real>
inline Vector2<Real>& Vector2<Real>::operator*= (Real scalar)
{
mTuple[0] *= scalar;
mTuple[1] *= scalar;
return *this;
}
//----------------------------------------------------------------------------
template <typename Real>
inline Vector2<Real>& Vector2<Real>::operator/= (Real scalar)
{
if (scalar != (Real)0)
{
Real invScalar = ((Real)1)/scalar;
mTuple[0] *= invScalar;
mTuple[1] *= invScalar;
}
else
{
mTuple[0] *= Math<Real>::MAX_REAL;
mTuple[1] *= Math<Real>::MAX_REAL;
}
return *this;
}
//----------------------------------------------------------------------------
template <typename Real>
inline Real Vector2<Real>::Length () const
{
return Math<Real>::Sqrt
(
mTuple[0]*mTuple[0] +
mTuple[1]*mTuple[1]
);
}
//----------------------------------------------------------------------------
template <typename Real>
inline Real Vector2<Real>::SquaredLength () const
{
return
mTuple[0]*mTuple[0] +
mTuple[1]*mTuple[1];
}
//----------------------------------------------------------------------------
template <typename Real>
inline Real Vector2<Real>::Dot (const Vector2& vec) const
{
return
mTuple[0]*vec.mTuple[0] +
mTuple[1]*vec.mTuple[1];
}
//----------------------------------------------------------------------------
template <typename Real>
inline Real Vector2<Real>::Normalize (const Real epsilon)
{
Real length = Length();
if (length > epsilon)
{
Real invLength = ((Real)1)/length;
mTuple[0] *= invLength;
mTuple[1] *= invLength;
}
else
{
length = (Real)0;
mTuple[0] = (Real)0;
mTuple[1] = (Real)0;
}
return length;
}
//----------------------------------------------------------------------------
template <typename Real>
inline Vector2<Real> Vector2<Real>::Perp () const
{
return Vector2
(
mTuple[1],
-mTuple[0]
);
}
//----------------------------------------------------------------------------
template <typename Real>
inline Vector2<Real> Vector2<Real>::UnitPerp () const
{
Vector2 perp(mTuple[1], -mTuple[0]);
perp.Normalize();
return perp;
}
//----------------------------------------------------------------------------
template <typename Real>
inline Real Vector2<Real>::DotPerp (const Vector2& vec) const
{
return mTuple[0]*vec.mTuple[1] - mTuple[1]*vec.mTuple[0];
}
//----------------------------------------------------------------------------
template <typename Real>
void Vector2<Real>::ComputeExtremes (int numVectors, const Vector2* vectors,
Vector2& vmin, Vector2& vmax)
{
assertion(numVectors > 0 && vectors,
"Invalid inputs to ComputeExtremes\n");
vmin = vectors[0];
vmax = vmin;
for (int j = 1; j < numVectors; ++j)
{
const Vector2& vec = vectors[j];
for (int i = 0; i < 2; ++i)
{
if (vec[i] < vmin[i])
{
vmin[i] = vec[i];
}
else if (vec[i] > vmax[i])
{
vmax[i] = vec[i];
}
}
}
}
//----------------------------------------------------------------------------
template <typename Real>
void Vector2<Real>::Orthonormalize (Vector2& u, Vector2& v)
{
// If the input vectors are v0 and v1, then the Gram-Schmidt
// orthonormalization produces vectors u0 and u1 as follows,
//
// u0 = v0/|v0|
// u1 = (v1-(u0*v1)u0)/|v1-(u0*v1)u0|
//
// where |A| indicates length of vector A and A*B indicates dot
// product of vectors A and B.
// Compute u0.
u.Normalize();
// Compute u1.
Real dot0 = u.Dot(v);
v -= u*dot0;
v.Normalize();
}
//----------------------------------------------------------------------------
template <typename Real>
void Vector2<Real>::GenerateOrthonormalBasis (Vector2& u, Vector2& v)
{
v.Normalize();
u = v.Perp();
}
//----------------------------------------------------------------------------
template <typename Real>
bool Vector2<Real>::GetBarycentrics (const Vector2& v0, const Vector2& v1,
const Vector2& v2, Real bary[3], Real epsilon) const
{
// Compute the vectors relative to V2 of the triangle.
Vector2 diff[3] = { v0 - v2, v1 - v2, *this - v2 };
Real det = diff[0].DotPerp(diff[1]);
if (Math<Real>::FAbs(det) > epsilon)
{
Real invDet = ((Real)1)/det;
bary[0] = diff[2].DotPerp(diff[1])*invDet;
bary[1] = diff[0].DotPerp(diff[2])*invDet;
bary[2] = (Real)1 - bary[0] - bary[1];
return true;
}
for (int i = 0; i < 3; ++i)
{
bary[i] = (Real)0;
}
#ifdef WM5_ASSERT_ON_BARYCENTRIC2_DEGENERATE
assertion(false, "Input triangle is degenerate.\n");
#endif
return false;
}
//----------------------------------------------------------------------------
template <typename Real>
void Vector2<Real>::GetInformation (int numPoints, const Vector2* points,
Real epsilon, Information& info)
{
assertion(numPoints > 0 && points && epsilon >= (Real)0,
"Invalid inputs to GetInformation\n");
info.mExtremeCCW = false;
// Compute the axis-aligned bounding box for the input points. Keep track
// of the indices into 'points' for the current min and max.
int j, indexMin[2], indexMax[2];
for (j = 0; j < 2; ++j)
{
info.mMin[j] = points[0][j];
info.mMax[j] = info.mMin[j];
indexMin[j] = 0;
indexMax[j] = 0;
}
int i;
for (i = 1; i < numPoints; ++i)
{
for (j = 0; j < 2; ++j)
{
if (points[i][j] < info.mMin[j])
{
info.mMin[j] = points[i][j];
indexMin[j] = i;
}
else if (points[i][j] > info.mMax[j])
{
info.mMax[j] = points[i][j];
indexMax[j] = i;
}
}
}
// Determine the maximum range for the bounding box.
info.mMaxRange = info.mMax[0] - info.mMin[0];
info.mExtreme[0] = indexMin[0];
info.mExtreme[1] = indexMax[0];
Real range = info.mMax[1] - info.mMin[1];
if (range > info.mMaxRange)
{
info.mMaxRange = range;
info.mExtreme[0] = indexMin[1];
info.mExtreme[1] = indexMax[1];
}
// The origin is either the point of minimum x-value or point of
// minimum y-value.
info.mOrigin = points[info.mExtreme[0]];
// Test whether the point set is (nearly) a point.
if (info.mMaxRange < epsilon)
{
info.mDimension = 0;
for (j = 0; j < 2; ++j)
{
info.mExtreme[j + 1] = info.mExtreme[0];
info.mDirection[j][0] = (Real)0;
info.mDirection[j][1] = (Real)0;
}
return;
}
// Test whether the point set is (nearly) a line segment.
info.mDirection[0] = points[info.mExtreme[1]] - info.mOrigin;
info.mDirection[0].Normalize();
info.mDirection[1] = -info.mDirection[0].Perp();
Real maxDistance = (Real)0;
Real maxSign = (Real)0;
info.mExtreme[2] = info.mExtreme[0];
for (i = 0; i < numPoints; ++i)
{
Vector2 diff = points[i] - info.mOrigin;
Real distance = info.mDirection[1].Dot(diff);
Real sign = Math<Real>::Sign(distance);
distance = Math<Real>::FAbs(distance);
if (distance > maxDistance)
{
maxDistance = distance;
maxSign = sign;
info.mExtreme[2] = i;
}
}
if (maxDistance < epsilon*info.mMaxRange)
{
info.mDimension = 1;
info.mExtreme[2] = info.mExtreme[1];
return;
}
info.mDimension = 2;
info.mExtremeCCW = (maxSign > (Real)0);
}
//----------------------------------------------------------------------------
template <typename Real>
inline Vector2<Real> operator* (Real scalar, const Vector2<Real>& vec)
{
return Vector2<Real>
(
scalar*vec[0],
scalar*vec[1]
);
}
//----------------------------------------------------------------------------
template <typename Real>
std::ostream& operator<< (std::ostream& outFile, const Vector2<Real>& vec)
{
return outFile << vec.X() << ' ' << vec.Y();
}
//----------------------------------------------------------------------------
|