This file is indexed.

/usr/include/loki/TypeManip.h is in libxdmf-dev 3.0+git20160803-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
////////////////////////////////////////////////////////////////////////////////
// The Loki Library
// Copyright (c) 2001 by Andrei Alexandrescu
// This code accompanies the book:
// Alexandrescu, Andrei. "Modern C++ Design: Generic Programming and Design 
//     Patterns Applied". Copyright (c) 2001. Addison-Wesley.
// Permission to use, copy, modify, distribute and sell this software for any 
//     purpose is hereby granted without fee, provided that the above copyright 
//     notice appear in all copies and that both that copyright notice and this 
//     permission notice appear in supporting documentation.
// The author or Addison-Welsey Longman make no representations about the 
//     suitability of this software for any purpose. It is provided "as is" 
//     without express or implied warranty.
////////////////////////////////////////////////////////////////////////////////
#ifndef LOKI_TYPEMANIP_INC_
#define LOKI_TYPEMANIP_INC_

// $Id: TypeManip.h 749 2006-10-17 19:49:26Z syntheticpp $


namespace Loki
{
////////////////////////////////////////////////////////////////////////////////
// class template Int2Type
// Converts each integral constant into a unique type
// Invocation: Int2Type<v> where v is a compile-time constant integral
// Defines 'value', an enum that evaluates to v
////////////////////////////////////////////////////////////////////////////////

    template <int v>
    struct Int2Type
    {
        enum { value = v };
    };
    
////////////////////////////////////////////////////////////////////////////////
// class template Type2Type
// Converts each type into a unique, insipid type
// Invocation Type2Type<T> where T is a type
// Defines the type OriginalType which maps back to T
////////////////////////////////////////////////////////////////////////////////

    template <typename T>
    struct Type2Type
    {
        typedef T OriginalType;
    };
    
////////////////////////////////////////////////////////////////////////////////
// class template Select
// Selects one of two types based upon a boolean constant
// Invocation: Select<flag, T, U>::Result
// where:
// flag is a compile-time boolean constant
// T and U are types
// Result evaluates to T if flag is true, and to U otherwise.
////////////////////////////////////////////////////////////////////////////////

    template <bool flag, typename T, typename U>
    struct Select
    {
        typedef T Result;
    };
    template <typename T, typename U>
    struct Select<false, T, U>
    {
        typedef U Result;
    };
    
////////////////////////////////////////////////////////////////////////////////
// class template IsSameType
// Return true iff two given types are the same
// Invocation: SameType<T, U>::value
// where:
// T and U are types
// Result evaluates to true iff U == T (types equal)
////////////////////////////////////////////////////////////////////////////////

    template <typename T, typename U>
    struct IsSameType
    {
        enum { value = false };
    };
    
    template <typename T>
    struct IsSameType<T,T>
    {
        enum { value = true };
    };

////////////////////////////////////////////////////////////////////////////////
// Helper types Small and Big - guarantee that sizeof(Small) < sizeof(Big)
////////////////////////////////////////////////////////////////////////////////

    namespace Private
    {
        template <class T, class U>
        struct ConversionHelper
        {
            typedef char Small;
            struct Big { char dummy[2]; };
            static Big   Test(...);
            static Small Test(U);
            static T MakeT();
        };
    }

////////////////////////////////////////////////////////////////////////////////
// class template Conversion
// Figures out the conversion relationships between two types
// Invocations (T and U are types):
// a) Conversion<T, U>::exists
// returns (at compile time) true if there is an implicit conversion from T
// to U (example: Derived to Base)
// b) Conversion<T, U>::exists2Way
// returns (at compile time) true if there are both conversions from T
// to U and from U to T (example: int to char and back)
// c) Conversion<T, U>::sameType
// returns (at compile time) true if T and U represent the same type
//
// Caveat: might not work if T and U are in a private inheritance hierarchy.
////////////////////////////////////////////////////////////////////////////////

    template <class T, class U>
    struct Conversion
    {
        typedef Private::ConversionHelper<T, U> H;
#ifndef __MWERKS__
        enum { exists = sizeof(typename H::Small) == sizeof((H::Test(H::MakeT()))) };
#else
        enum { exists = false };
#endif
        enum { exists2Way = exists && Conversion<U, T>::exists };
        enum { sameType = false };
    };
    
    template <class T>
    struct Conversion<T, T>    
    {
        enum { exists = 1, exists2Way = 1, sameType = 1 };
    };
    
    template <class T>
    struct Conversion<void, T>    
    {
        enum { exists = 0, exists2Way = 0, sameType = 0 };
    };
    
    template <class T>
    struct Conversion<T, void>    
    {
        enum { exists = 0, exists2Way = 0, sameType = 0 };
    };
    
    template <>
    struct Conversion<void, void>    
    {
    public:
        enum { exists = 1, exists2Way = 1, sameType = 1 };
    };

////////////////////////////////////////////////////////////////////////////////
// class template SuperSubclass
// Invocation: SuperSubclass<B, D>::value where B and D are types. 
// Returns true if B is a public base of D, or if B and D are aliases of the 
// same type.
//
// Caveat: might not work if T and U are in a private inheritance hierarchy.
////////////////////////////////////////////////////////////////////////////////

template <class T, class U>
struct SuperSubclass
{
    enum { value = (::Loki::Conversion<const volatile U*, const volatile T*>::exists &&
                  !::Loki::Conversion<const volatile T*, const volatile void*>::sameType) };
      
    // Dummy enum to make sure that both classes are fully defined.
    enum{ dontUseWithIncompleteTypes = ( sizeof (T) == sizeof (U) ) };
};

template <>
struct SuperSubclass<void, void> 
{
    enum { value = false };
};

template <class U>
struct SuperSubclass<void, U> 
{
    enum { value = (::Loki::Conversion<const volatile U*, const volatile void*>::exists &&
                  !::Loki::Conversion<const volatile void*, const volatile void*>::sameType) };
      
    // Dummy enum to make sure that both classes are fully defined.
    enum{ dontUseWithIncompleteTypes = ( 0 == sizeof (U) ) };
};

template <class T>
struct SuperSubclass<T, void> 
{
    enum { value = (::Loki::Conversion<const volatile void*, const volatile T*>::exists &&
                  !::Loki::Conversion<const volatile T*, const volatile void*>::sameType) };
      
    // Dummy enum to make sure that both classes are fully defined.
    enum{ dontUseWithIncompleteTypes = ( sizeof (T) == 0 ) };
};

////////////////////////////////////////////////////////////////////////////////
// class template SuperSubclassStrict
// Invocation: SuperSubclassStrict<B, D>::value where B and D are types. 
// Returns true if B is a public base of D.
//
// Caveat: might not work if T and U are in a private inheritance hierarchy.
////////////////////////////////////////////////////////////////////////////////

template<class T,class U>
struct SuperSubclassStrict
{
    enum { value = (::Loki::Conversion<const volatile U*, const volatile T*>::exists &&
                 !::Loki::Conversion<const volatile T*, const volatile void*>::sameType &&
                 !::Loki::Conversion<const volatile T*, const volatile U*>::sameType) };
    
    // Dummy enum to make sure that both classes are fully defined.
    enum{ dontUseWithIncompleteTypes = ( sizeof (T) == sizeof (U) ) };
};

template<>
struct SuperSubclassStrict<void, void> 
{
    enum { value = false };
};

template<class U>
struct SuperSubclassStrict<void, U> 
{
    enum { value = (::Loki::Conversion<const volatile U*, const volatile void*>::exists &&
                 !::Loki::Conversion<const volatile void*, const volatile void*>::sameType &&
                 !::Loki::Conversion<const volatile void*, const volatile U*>::sameType) };
    
    // Dummy enum to make sure that both classes are fully defined.
    enum{ dontUseWithIncompleteTypes = ( 0 == sizeof (U) ) };
};

template<class T>
struct SuperSubclassStrict<T, void> 
{
    enum { value = (::Loki::Conversion<const volatile void*, const volatile T*>::exists &&
                 !::Loki::Conversion<const volatile T*, const volatile void*>::sameType &&
                 !::Loki::Conversion<const volatile T*, const volatile void*>::sameType) };
    
    // Dummy enum to make sure that both classes are fully defined.
    enum{ dontUseWithIncompleteTypes = ( sizeof (T) == 0 ) };
};


}   // namespace Loki

////////////////////////////////////////////////////////////////////////////////
// macro SUPERSUBCLASS
// Invocation: SUPERSUBCLASS(B, D) where B and D are types. 
// Returns true if B is a public base of D, or if B and D are aliases of the 
// same type.
//
// Caveat: might not work if T and U are in a private inheritance hierarchy.
// Deprecated: Use SuperSubclass class template instead.
////////////////////////////////////////////////////////////////////////////////

#define LOKI_SUPERSUBCLASS(T, U) \
    ::Loki::SuperSubclass<T,U>::value

////////////////////////////////////////////////////////////////////////////////
// macro SUPERSUBCLASS_STRICT
// Invocation: SUPERSUBCLASS(B, D) where B and D are types. 
// Returns true if B is a public base of D.
//
// Caveat: might not work if T and U are in a private inheritance hierarchy.
// Deprecated: Use SuperSubclassStrict class template instead.
////////////////////////////////////////////////////////////////////////////////

#define LOKI_SUPERSUBCLASS_STRICT(T, U) \
    ::Loki::SuperSubclassStrict<T,U>::value


#endif // end file guardian