This file is indexed.

/usr/include/xenomai/asm-sh/bits/pod.h is in libxenomai-dev 2.6.4+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
/*
 * Copyright (C) 2011 Philippe Gerum <rpm@xenomai.org>.
 *
 * Xenomai is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * Xenomai is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Xenomai; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
 * 02111-1307, USA.
 */

#ifndef _XENO_ASM_SH_BITS_POD_H
#define _XENO_ASM_SH_BITS_POD_H

#include <asm-generic/xenomai/bits/pod.h>
#include <asm/xenomai/switch.h>

void xnpod_welcome_thread(struct xnthread *, int);

void xnpod_delete_thread(struct xnthread *);

extern int xnarch_escalation_virq;

static inline int xnarch_start_timer(void (*tick_handler)(void), int cpu)
{
	return rthal_timer_request(tick_handler,
				   xnarch_switch_htick_mode,
				   xnarch_next_htick_shot,
				   cpu);
}

static inline void xnarch_stop_timer(int cpu)
{
	rthal_timer_release(cpu);
}

static inline void xnarch_leave_root(xnarchtcb_t * rootcb)
{
	struct task_struct *p = current;

	rootcb->user_task = rootcb->active_task = p;
	rootcb->tsp = &p->thread;
	rootcb->mm = rootcb->active_mm = rthal_get_active_mm();
#ifdef CONFIG_XENO_HW_FPU
	rootcb->user_fpu_owner = rthal_get_fpu_owner(p);
	rootcb->fpup = rootcb->user_fpu_owner ?
		&rootcb->user_fpu_owner->thread : NULL;
#endif /* CONFIG_XENO_HW_FPU */
}

static inline void xnarch_enter_root(xnarchtcb_t * rootcb)
{
}

static inline void xnarch_switch_to(xnarchtcb_t *out_tcb,
				    xnarchtcb_t *in_tcb)
{
	struct mm_struct *prev_mm = out_tcb->active_mm, *next_mm;
	struct task_struct *prev = out_tcb->active_task;
	struct task_struct *next = in_tcb->user_task;

	if (likely(next != NULL)) {
		in_tcb->active_task = next;
		in_tcb->active_mm = in_tcb->mm;
		rthal_clear_foreign_stack(&rthal_domain);
	} else {
		in_tcb->active_task = prev;
		in_tcb->active_mm = prev_mm;
		rthal_set_foreign_stack(&rthal_domain);
	}

	next_mm = in_tcb->active_mm;

	if (next_mm && likely(prev_mm != next_mm))
		wrap_switch_mm(prev_mm, next_mm, next);

	xnarch_switch_threads(out_tcb, in_tcb, prev, next);
}

asmlinkage void xnarch_thread_trampoline(struct xnarchtcb *tcb)
{
	xnpod_welcome_thread(tcb->self, tcb->imask);
	tcb->entry(tcb->cookie);
	xnpod_delete_thread(tcb->self);
}

static inline void xnarch_init_thread(xnarchtcb_t *tcb,
				      void (*entry) (void *),
				      void *cookie,
				      int imask,
				      struct xnthread *thread, char *name)
{
	unsigned long *sp, sr, gbr;

	/*
	 * Stack space is guaranteed to have been fully zeroed. We do
	 * this earlier in xnthread_init() which runs with interrupts
	 * on, to reduce latency.
	 */
	sp = (void *)tcb->stackbase + tcb->stacksize;
	*--sp = (unsigned long)tcb;
	sr = SR_MD;
#ifdef CONFIG_SH_FPU
	sr |= SR_FD;	/* Disable FPU */
#endif
	*--sp = (unsigned long)sr;
	__asm__ __volatile__ ("stc gbr, %0" : "=r" (gbr));
	*--sp = (unsigned long)gbr;
	tcb->ts.sp = (unsigned long)sp;
	tcb->ts.pc = (unsigned long)rthal_thread_trampoline;
	tcb->entry = entry;
	tcb->cookie = cookie;
	tcb->self = thread;
	tcb->imask = imask;
	tcb->name = name;
}

/* No lazy FPU init on SH. */
#define xnarch_fpu_init_p(task) (1)

#ifdef CONFIG_XENO_HW_FPU

static void xnarch_init_fpu(xnarchtcb_t * tcb)
{
	/*
	 * Initialize the FPU for an emerging kernel-based RT
	 * thread. This must be run on behalf of the emerging thread.
	 * xnarch_init_tcb() guarantees that all FPU regs are zeroed
	 * in tcb.
	 */
	rthal_init_fpu(&tcb->ts);
}

static inline void xnarch_enable_fpu(xnarchtcb_t *tcb)
{
	struct task_struct *task = tcb->user_task;

	if (task && task != tcb->user_fpu_owner)
		rthal_disable_fpu();
	else
		rthal_enable_fpu();
}

static void xnarch_save_fpu(xnarchtcb_t *tcb)
{
	struct pt_regs *regs;

	if (tcb->fpup) {
		rthal_save_fpu(tcb->fpup);
		if (tcb->user_fpu_owner) {
			regs = task_pt_regs(tcb->user_fpu_owner);
			regs->sr |= SR_FD;
		}
	}
}

static void xnarch_restore_fpu(xnarchtcb_t * tcb)
{
	struct pt_regs *regs;

	if (tcb->fpup) {
		rthal_restore_fpu(tcb->fpup);
		/*
		 * Note: Only enable FPU in SR, if it was enabled when
		 * we saved the fpu state.
		 */
		if (tcb->user_fpu_owner) {
			regs = task_pt_regs(tcb->user_fpu_owner);
			regs->sr &= ~SR_FD;
		}
	}

	if (tcb->user_task && tcb->user_task != tcb->user_fpu_owner)
		rthal_disable_fpu();
}

#endif /* CONFIG_XENO_HW_FPU */

static inline int xnarch_escalate(void)
{
	extern int xnarch_escalation_virq;

	if (rthal_current_domain == rthal_root_domain) {
		rthal_trigger_irq(xnarch_escalation_virq);
		return 1;
	}

	return 0;
}

#endif /* !_XENO_ASM_SH_BITS_POD_H */