This file is indexed.

/usr/include/xenomai/asm-x86/bits/pod.h is in libxenomai-dev 2.6.4+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
/*
 * Copyright (C) 2001,2002,2003 Philippe Gerum <rpm@xenomai.org>.
 * Copyright (C) 2004 The HYADES Project (http://www.hyades-itea.org).
 * Copyright (C) 2004,2005 Gilles Chanteperdrix <gilles.chanteperdrix@xenomai.org>.
 *
 * x86_64 port:
 * Copyright (C) 2001-2007 Philippe Gerum <rpm@xenomai.org>.
 * Copyright (C) 2004-2006 Gilles Chanteperdrix <gilles.chanteperdrix@xenomai.org>.
 *
 * Xenomai is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * Xenomai is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Xenomai; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
 * 02111-1307, USA.
 */

#ifndef _XENO_ASM_X86_BITS_POD_H
#define _XENO_ASM_X86_BITS_POD_H
#define _XENO_ASM_X86_BITS_POD_H

#include <asm-generic/xenomai/bits/pod.h>
#include <asm/xenomai/switch.h>

void xnpod_welcome_thread(struct xnthread *, int);

void xnpod_delete_thread(struct xnthread *);

#ifdef CONFIG_GENERIC_CLOCKEVENTS
#define xnarch_start_timer(tick_handler, cpu)	\
	rthal_timer_request(tick_handler, xnarch_switch_htick_mode, xnarch_next_htick_shot, cpu)
#else
#define xnarch_start_timer(tick_handler, cpu)	\
	rthal_timer_request(tick_handler, cpu)
#endif

#define xnarch_stop_timer(cpu)	rthal_timer_release(cpu)

static inline void xnarch_leave_root(xnarchtcb_t *rootcb)
{
	rthal_root_preempt_notify();

	/* Remember the preempted Linux task pointer. */
	rootcb->user_task = rootcb->active_task = current;
#ifdef CONFIG_X86_64
	rootcb->spp = &current->thread.x86reg_sp;
	rootcb->ipp = &current->thread.rip;
#endif
	rootcb->ts_usedfpu = !!wrap_test_fpu_used(current);
	rootcb->cr0_ts = (read_cr0() & 8) != 0;
	/* So that xnarch_save_fpu() will operate on the right FPU area. */
	if (rootcb->cr0_ts || rootcb->ts_usedfpu)
		rootcb->fpup = x86_fpustate_ptr(&rootcb->user_task->thread);
	else
		/*
		 * The kernel is currently using fpu in kernel-space,
		 * do not clobber the user-space fpu backup area.
		 */
		rootcb->fpup = &rootcb->i387;
}

static inline void xnarch_enter_root(xnarchtcb_t *rootcb) { }

static inline void xnarch_switch_to(xnarchtcb_t *out_tcb, xnarchtcb_t *in_tcb)
{
	struct task_struct *prev = out_tcb->active_task;
	struct task_struct *next = in_tcb->user_task;
#ifndef CONFIG_X86_64
	unsigned long fs, gs;
#endif

	if (likely(next != NULL)) {
		if (wrap_test_fpu_used(prev))
			/*
			 * __switch_to will try and use __unlazy_fpu,
			 * so we need to clear the ts bit.
			 */
			clts();
		in_tcb->active_task = next;
		rthal_clear_foreign_stack(&rthal_domain);
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3,13,0)
		next->thread.fpu_counter = 0;
#elif LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
		next->fpu_counter = 0;
#endif
	} else {
		in_tcb->active_task = prev;
		rthal_set_foreign_stack(&rthal_domain);
	}

	if (next && next != prev) {
		struct mm_struct *oldmm = prev->active_mm;
		wrap_switch_mm(oldmm, next->active_mm, next);
		if (next->mm == NULL)
			wrap_enter_lazy_tlb(oldmm, next);
	}

#ifdef CONFIG_CC_STACKPROTECTOR
#define xnarch_switch_canary  in_tcb->canary
#else
#define xnarch_switch_canary  0
#endif

#ifndef CONFIG_X86_64
	if (out_tcb->user_task) {
		/* Make sure that __switch_to() will always reload the correct
		   %fs and %gs registers, even if we happen to migrate the task
		   across domains in the meantime. */
		asm volatile ("mov %%fs,%0":"=m" (fs));
		asm volatile ("mov %%gs,%0":"=m" (gs));
	}

	xnarch_switch_threads(out_tcb, in_tcb, prev, next);

	if (xnarch_shadow_p(out_tcb, prev)) {
		loadsegment(fs, fs);
		loadsegment(gs, gs);
		barrier();
		/*
		 * Eagerly reinstate the I/O bitmap of any incoming
		 * shadow thread which has previously requested I/O
		 * permissions. We don't want the unexpected latencies
		 * induced by lazy update from the GPF handler to bite
		 * shadow threads that explicitly told the kernel that
		 * they would need to perform raw I/O ops.
		 */
		wrap_switch_iobitmap(prev, rthal_processor_id());
	}
#else  /* CONFIG_X86_64 */
	xnarch_switch_threads(prev, next,
			      out_tcb->spp, in_tcb->spp,
			      out_tcb->ipp, in_tcb->ipp,
			      xnarch_switch_canary);

#endif	/* CONFIG_X86_64 */

	stts();
}

asmlinkage static void xnarch_thread_trampoline(xnarchtcb_t *tcb)
{
	/* xnpod_welcome_thread() will do clts() if needed. */
	stts();
	xnpod_welcome_thread(tcb->self, tcb->imask);
	tcb->entry(tcb->cookie);
	xnpod_delete_thread(tcb->self);

	xnarch_thread_head();
}

static inline void xnarch_init_thread(xnarchtcb_t *tcb,
				      void (*entry)(void *),
				      void *cookie,
				      int imask,
				      struct xnthread *thread, char *name)
{
#ifdef CONFIG_X86_64
	struct xnarch_x8664_initstack *childregs;
	unsigned long *sp, flags;

	/* Prepare the bootstrap stack. */

	rthal_local_irq_flags_hw(flags);

	sp = (unsigned long *)((unsigned long)tcb->stackbase + tcb->stacksize -
			       sizeof(struct xnarch_x8664_initstack) - 8);

	childregs = (struct xnarch_x8664_initstack *)sp;
	childregs->rbp = 0;
	childregs->eflags = flags & ~X86_EFLAGS_IF;
	childregs->arg = (unsigned long)tcb;
	childregs->entry = (unsigned long)xnarch_thread_trampoline;
#ifdef CONFIG_CC_STACKPROTECTOR
	tcb->canary = (unsigned long)xnarch_get_cpu_tsc() ^ childregs->arg;
	childregs->canary = tcb->canary;
#endif
	tcb->sp = (unsigned long)childregs;
	tcb->ip = (unsigned long)__thread_head; /* Will branch there at startup. */
#else /* CONFIG_X86_32 */
	unsigned long **psp = (unsigned long **)&tcb->sp;

	tcb->ip = (unsigned long)xnarch_thread_trampoline;
	tcb->sp = (unsigned long)tcb->stackbase;
	*psp =
		(unsigned long *)(((unsigned long)*psp + tcb->stacksize - 0x10) &
				  ~0xf);
	*--(*psp) = (unsigned long)tcb;
	*--(*psp) = 0;
#endif /* CONFIG_X86_32 */

	tcb->entry = entry;
	tcb->cookie = cookie;
	tcb->self = thread;
	tcb->imask = imask;
	tcb->name = name;
}

#ifdef CONFIG_XENO_HW_FPU

#define xnarch_fpu_init_p(task)   tsk_used_math(task)
#define xnarch_set_fpu_init(task) set_stopped_child_used_math(task)

static inline void xnarch_init_fpu(xnarchtcb_t * tcb)
{
	struct task_struct *task = tcb->user_task;
	/* Initialize the FPU for a task. This must be run on behalf of the
	   task. */

	__asm__ __volatile__("clts; fninit");
	if (cpu_has_xmm) {
		unsigned long __mxcsr;
		__mxcsr = 0x1f80UL & 0xffbfUL;
		__asm__ __volatile__("ldmxcsr %0"::"m"(__mxcsr));
	}

	if (task) {
		/* Real-time shadow FPU initialization: tell Linux
		   that this thread initialized its FPU hardware. The
		   fpu usage bit is necessary for xnarch_save_fpu to
		   save the FPU state at next switch. */
		xnarch_set_fpu_init(task);
		wrap_set_fpu_used(task);
	}
}

#ifdef CONFIG_X86_64
#define XSAVE_PREFIX	"0x48,"
#define XSAVE_SUFFIX	"q"
#else
#define XSAVE_PREFIX
#define XSAVE_SUFFIX
#endif

static inline void __save_i387(x86_fpustate *fpup)
{
#ifdef cpu_has_xsave
	if (cpu_has_xsave) {
#if defined(CONFIG_AS_AVX)
		asm volatile("xsave" XSAVE_SUFFIX " %0"
			     : "=m" (fpup->xsave) : "a" (-1), "d" (-1)
			     : "memory");
#else /* !CONFIG_AS_AVX */
		asm volatile(".byte " XSAVE_PREFIX "0x0f,0xae,0x27"
			     : : "D" (&fpup->xsave), "m" (fpup->xsave),
			         "a" (-1), "d" (-1)
			     : "memory");
#endif /* !CONFIG_AS_AVX */
		return;
	}
#endif /* cpu_has_xsave */
#ifndef CONFIG_X86_64
	if (cpu_has_fxsr)
		__asm__ __volatile__("fxsave %0; fnclex":"=m"(*fpup));
	else
		__asm__ __volatile__("fnsave %0; fwait":"=m"(*fpup));
#else /* CONFIG_X86_64 */
#ifdef CONFIG_AS_FXSAVEQ
	asm volatile("fxsaveq %0" : "=m" (fpup->fxsave));
#else /* !CONFIG_AS_FXSAVEQ */
	asm volatile("rex64/fxsave (%[fx])"
		     : "=m" (fpup->fxsave)
		     : [fx] "R" (&fpup->fxsave));
#endif /* !CONFIG_AS_FXSAVEQ */
#endif /* CONFIG_X86_64 */
}

static inline void xnarch_save_fpu(xnarchtcb_t *tcb)
{
	struct task_struct *task = tcb->user_task;

	if (!tcb->is_root) {
		if (task) {
			/* fpu not used or already saved by __switch_to. */
			if (wrap_test_fpu_used(task) == 0)
				return;

			/* Tell Linux that we already saved the state
			 * of the FPU hardware of this task. */
			wrap_clear_fpu_used(task);
		}
	} else {
		if (tcb->cr0_ts ||
		    (tcb->ts_usedfpu && wrap_test_fpu_used(task) == 0))
			return;

		wrap_clear_fpu_used(task);
	}

	clts();

	__save_i387(tcb->fpup);
}

static inline void __restore_i387(x86_fpustate *fpup)
{
#ifdef cpu_has_xsave
	if (cpu_has_xsave) {
#if defined(CONFIG_AS_AVX)
		asm volatile("xrstor" XSAVE_SUFFIX " %0"
			     : : "m" (fpup->xsave), "a" (-1), "d" (-1)
			     : "memory");
#else /* !CONFIG_AS_AVX */
		asm volatile(".byte " XSAVE_PREFIX "0x0f,0xae,0x2f"
			     : : "D" (&fpup->xsave), "m" (fpup->xsave),
			         "a" (-1), "d" (-1)
			     : "memory");
#endif /* !CONFIG_AS_AVX */
		return;
	}
#endif /* cpu_has_xsave */
#ifndef CONFIG_X86_64
	if (cpu_has_fxsr)
		__asm__ __volatile__("fxrstor %0": /* no output */
				     :"m"(*fpup));
	else
		__asm__ __volatile__("frstor %0": /* no output */
				     :"m"(*fpup));
#else /* CONFIG_X86_64 */
#ifdef CONFIG_AS_FXSAVEQ
	asm volatile("fxrstorq %0" : : "m" (fpup->fxsave));
#else /* !CONFIG_AS_FXSAVEQ */
	asm volatile("rex64/fxrstor (%0)"
		     : : "R" (&fpup->fxsave), "m" (fpup->fxsave));
#endif /* !CONFIG_AS_FXSAVEQ */
#endif /* CONFIG_X86_64 */
}

static inline void xnarch_restore_fpu(xnarchtcb_t * tcb)
{
	struct task_struct *task = tcb->user_task;

	if (!tcb->is_root) {
		if (task) {
			if (!xnarch_fpu_init_p(task)) {
				stts();
				return;	/* Uninit fpu area -- do not restore. */
			}

			/* Tell Linux that this task has altered the state of
			 * the FPU hardware. */
			wrap_set_fpu_used(task);
		}
	} else {
		/* Restore state of FPU only if TS bit in cr0 was clear. */
		if (tcb->cr0_ts) {
			wrap_clear_fpu_used(task);
			stts();
			return;
		}

		if (tcb->ts_usedfpu
		    && wrap_test_fpu_used(task) == 0) {
			/* __switch_to saved the fpu context, no need to restore
			   it since we are switching to root, where fpu can be
			   in lazy state. */
			stts();
			return;
		}
	}

	/* Restore the FPU hardware with valid fp registers from a
	   user-space or kernel thread. */
	clts();

	__restore_i387(tcb->fpup);
}

static inline void xnarch_enable_fpu(xnarchtcb_t *tcb)
{
	struct task_struct *task = tcb->user_task;

	if (!tcb->is_root) {
		if (task) {
			if (!xnarch_fpu_init_p(task))
				return;
			/*
			 * We used to test here if __switch_to had not
			 * saved current fpu state, but this can not
			 * happen, since xnarch_enable_fpu may only be
			 * called when switching back to a user-space
			 * task after one or several switches to
			 * non-fpu kernel-space real-time tasks, so
			 * xnarch_switch_to never uses __switch_to.
			 */
		}
	} else if (tcb->cr0_ts)
		return;

	/* The comment in the non-root case applies here too. */

	clts();
}

#else /* !CONFIG_XENO_HW_FPU */

static inline void xnarch_init_fpu(xnarchtcb_t *tcb)
{
}

static inline void xnarch_save_fpu(xnarchtcb_t *tcb)
{
}

static inline void xnarch_restore_fpu(xnarchtcb_t *tcb)
{
}

static inline void xnarch_enable_fpu(xnarchtcb_t *tcb)
{
}

#endif /* CONFIG_XENO_HW_FPU */

static inline int xnarch_escalate(void)
{
	extern int xnarch_escalation_virq;

	if (rthal_current_domain == rthal_root_domain) {
		rthal_trigger_irq(xnarch_escalation_virq);
		return 1;
	}

	return 0;
}

#endif /* !_XENO_ASM_X86_BITS_POD_H */