/usr/lib/ocaml/zarith/q.mli is in libzarith-ocaml-dev 1.5-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 | (**
Rationals.
This modules builds arbitrary precision rationals on top of arbitrary
integers from module Z.
This file is part of the Zarith library
http://forge.ocamlcore.org/projects/zarith .
It is distributed under LGPL 2 licensing, with static linking exception.
See the LICENSE file included in the distribution.
Copyright (c) 2010-2011 Antoine Miné, Abstraction project.
Abstraction is part of the LIENS (Laboratoire d'Informatique de l'ENS),
a joint laboratory by:
CNRS (Centre national de la recherche scientifique, France),
ENS (École normale supérieure, Paris, France),
INRIA Rocquencourt (Institut national de recherche en informatique, France).
*)
(** {1 Types} *)
type t = {
num: Z.t; (** Numerator. *)
den: Z.t; (** Denominator, >= 0 *)
}
(** A rational is represented as a pair numerator/denominator, reduced to
have a non-negative denominator and no common factor.
This form is canonical (enabling polymorphic equality and hashing).
The representation allows three special numbers: [inf] (1/0), [-inf] (-1/0)
and [undef] (0/0).
*)
(** {1 Construction} *)
val make: Z.t -> Z.t -> t
(** [make num den] constructs a new rational equal to [num]/[den].
It takes care of putting the rational in canonical form.
*)
val zero: t
val one: t
val minus_one:t
(** 0, 1, -1. *)
val inf: t
(** 1/0. *)
val minus_inf: t
(** -1/0. *)
val undef: t
(** 0/0. *)
val of_bigint: Z.t -> t
val of_int: int -> t
val of_int32: int32 -> t
val of_int64: int64 -> t
val of_nativeint: nativeint -> t
(** Conversions from various integer types. *)
val of_ints: int -> int -> t
(** Conversion from an [int] numerator and an [int] denominator. *)
val of_float: float -> t
(** Conversion from a [float].
The conversion is exact, and maps NaN to [undef].
*)
val of_string: string -> t
(** Converts a string to a rational.
Plain decimals, and [/] separated decimal ratios (with optional sign) are
understood.
Additionally, the special [inf], [-inf], and [undef] are recognized
(they can also be typeset respectively as [1/0], [-1/0], [0/0]).
*)
(** {1 Inspection} *)
val num: t -> Z.t
(** Get the numerator. *)
val den: t -> Z.t
(** Get the denominator. *)
(** {1 Testing} *)
type kind =
| ZERO (** 0 *)
| INF (** infinity, i.e. 1/0 *)
| MINF (** minus infinity, i.e. -1/0 *)
| UNDEF (** undefined, i.e., 0/0 *)
| NZERO (** well-defined, non-infinity, non-zero number *)
(** Rationals can be categorized into different kinds, depending mainly on
whether the numerator and/or denominator is null.
*)
val classify: t -> kind
(** Determines the kind of a rational. *)
val is_real: t -> bool
(** Whether the argument is non-infinity and non-undefined. *)
val sign: t -> int
(** Returns 1 if the argument is positive (including inf), -1 if it is
negative (including -inf), and 0 if it is null or undefined.
*)
val compare: t -> t -> int
(** [compare x y] compares [x] to [y] and returns 1 if [x] is strictly
greater that [y], -1 if it is strictly smaller, and 0 if they are
equal.
This is a total ordering.
Infinities are ordered in the natural way, while undefined is considered
the smallest of all: undef = undef < -inf <= -inf < x < inf <= inf.
This is consistent with OCaml's handling of floating-point infinities
and NaN.
OCaml's polymorphic comparison will NOT return a result consistent with
the ordering of rationals.
*)
val equal: t -> t -> bool
(** Equality testing.
This is consistent with [compare]; in particular, [undef]=[undef].
*)
val min: t -> t -> t
(** Returns the smallest of its arguments. *)
val max: t -> t -> t
(** Returns the largest of its arguments. *)
val leq: t -> t -> bool
(** Less than or equal. *)
val geq: t -> t -> bool
(** Greater than or equal. *)
val lt: t -> t -> bool
(** Less than (not equal). *)
val gt: t -> t -> bool
(** Greater than (not equal). *)
(** {1 Conversions} *)
val to_bigint: t -> Z.t
val to_int: t -> int
val to_int32: t -> int32
val to_int64: t -> int64
val to_nativeint: t -> nativeint
(** Convert to integer by truncation.
Raises a [Divide_by_zero] if the argument is an infinity or undefined.
Raises a [Z.Overflow] if the result does not fit in the destination
type.
*)
val to_string: t -> string
(** Converts to human-readable, decimal, [/]-separated rational. *)
val to_float: t -> float
(** Converts to a floating-point number, using the current
floating-point rounding mode. With the default rounding mode,
the result is the floating-point number closest to the given
rational; ties break to even mantissa. *)
(** {1 Arithmetic operations} *)
(**
In all operations, the result is [undef] if one argument is [undef].
Other operations can return [undef]: such as [inf]-[inf], [inf]*0, 0/0.
*)
val neg: t -> t
(** Negation. *)
val abs: t -> t
(** Absolute value. *)
val add: t -> t -> t
(** Addition. *)
val sub: t -> t -> t
(** Subtraction. We have [sub x y] = [add x (neg y)]. *)
val mul: t -> t -> t
(** Multiplication. *)
val inv: t -> t
(** Inverse.
Note that [inv 0] is defined, and equals [inf].
*)
val div: t -> t -> t
(** Division.
We have [div x y] = [mul x (inv y)], and [inv x] = [div one x].
*)
val mul_2exp: t -> int -> t
(** [mul_2exp x n] multiplies [x] by 2 to the power of [n]. *)
val div_2exp: t -> int -> t
(** [div_2exp x n] divides [x] by 2 to the power of [n]. *)
(** {1 Printing} *)
val print: t -> unit
(** Prints the argument on the standard output. *)
val output: out_channel -> t -> unit
(** Prints the argument on the specified channel.
Also intended to be used as [%a] format printer in [Printf.printf].
*)
val sprint: unit -> t -> string
(** To be used as [%a] format printer in [Printf.sprintf]. *)
val bprint: Buffer.t -> t -> unit
(** To be used as [%a] format printer in [Printf.bprintf]. *)
val pp_print: Format.formatter -> t -> unit
(** Prints the argument on the specified formatter.
Also intended to be used as [%a] format printer in [Format.printf].
*)
(** {1 Prefix and infix operators} *)
(**
Classic prefix and infix [int] operators are redefined on [t].
*)
val (~-): t -> t
(** Negation [neg]. *)
val (~+): t -> t
(** Identity. *)
val (+): t -> t -> t
(** Addition [add]. *)
val (-): t -> t -> t
(** Subtraction [sub]. *)
val ( * ): t -> t -> t
(** Multiplication [mul]. *)
val (/): t -> t -> t
(** Division [div]. *)
val (lsl): t -> int -> t
(** Multiplication by a power of two [mul_2exp]. *)
val (asr): t -> int -> t
(** Division by a power of two [shift_right]. *)
val (~$): int -> t
(** Conversion from [int]. *)
val (//): int -> int -> t
(** Creates a rational from two [int]s. *)
val (~$$): Z.t -> t
(** Conversion from [Z.t]. *)
val (///): Z.t -> Z.t -> t
(** Creates a rational from two [Z.t]. *)
|