This file is indexed.

/usr/lib/ocaml/zarith/q.mli is in libzarith-ocaml-dev 1.5-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
(**
   Rationals.

   This modules builds arbitrary precision rationals on top of arbitrary
   integers from module Z.


   This file is part of the Zarith library 
   http://forge.ocamlcore.org/projects/zarith .
   It is distributed under LGPL 2 licensing, with static linking exception.
   See the LICENSE file included in the distribution.
   
   Copyright (c) 2010-2011 Antoine Miné, Abstraction project.
   Abstraction is part of the LIENS (Laboratoire d'Informatique de l'ENS),
   a joint laboratory by:
   CNRS (Centre national de la recherche scientifique, France),
   ENS (École normale supérieure, Paris, France),
   INRIA Rocquencourt (Institut national de recherche en informatique, France).

 *)

(** {1 Types} *)

type t = {
    num: Z.t; (** Numerator. *)
    den: Z.t; (** Denominator, >= 0 *)
  }
(** A rational is represented as a pair numerator/denominator, reduced to
    have a non-negative denominator and no common factor.
    This form is canonical (enabling polymorphic equality and hashing).
    The representation allows three special numbers: [inf] (1/0), [-inf] (-1/0)
    and [undef] (0/0).
 *)

(** {1 Construction} *)

val make: Z.t -> Z.t -> t
(** [make num den] constructs a new rational equal to [num]/[den].
    It takes care of putting the rational in canonical form.
 *)

val zero: t
val one: t
val minus_one:t
(** 0, 1, -1. *)

val inf: t
(** 1/0. *)

val minus_inf: t
(** -1/0. *)

val undef: t
(** 0/0. *)

val of_bigint: Z.t -> t
val of_int: int -> t
val of_int32: int32 -> t
val of_int64: int64 -> t
val of_nativeint: nativeint -> t
(** Conversions from various integer types. *)

val of_ints: int -> int -> t
(** Conversion from an [int] numerator and an [int] denominator. *)

val of_float: float -> t
(** Conversion from a [float].
    The conversion is exact, and maps NaN to [undef].
 *)


val of_string: string -> t
(** Converts a string to a rational.
    Plain decimals, and [/] separated decimal ratios (with optional sign) are
    understood.
    Additionally, the special [inf], [-inf], and [undef] are recognized
    (they can also be typeset respectively as [1/0], [-1/0], [0/0]).
 *)


(** {1 Inspection} *)

val num: t -> Z.t
(** Get the numerator. *)

val den: t -> Z.t
(** Get the denominator. *)


(** {1 Testing} *)

type kind = 
  | ZERO   (** 0 *)
  | INF    (** infinity, i.e. 1/0 *)
  | MINF   (** minus infinity, i.e. -1/0 *)
  | UNDEF  (** undefined, i.e., 0/0 *)
  | NZERO  (** well-defined, non-infinity, non-zero number *) 
(** Rationals can be categorized into different kinds, depending mainly on
    whether the numerator and/or denominator is null.
 *)

val classify: t -> kind
(** Determines the kind of a rational. *)

val is_real: t -> bool
(** Whether the argument is non-infinity and non-undefined. *)

val sign: t -> int
(** Returns 1 if the argument is positive (including inf), -1 if it is
    negative (including -inf), and 0 if it is null or undefined.
 *)

val compare: t -> t -> int
(** [compare x y] compares [x] to [y] and returns 1 if [x] is strictly
    greater that [y], -1 if it is strictly smaller, and 0 if they are
    equal.
    This is a total ordering.
    Infinities are ordered in the natural way, while undefined is considered
    the smallest of all: undef = undef < -inf <= -inf < x < inf <= inf.
    This is consistent with OCaml's handling of floating-point infinities 
    and NaN.

    OCaml's polymorphic comparison will NOT return a result consistent with
    the ordering of rationals.
 *)

val equal: t -> t -> bool
(** Equality testing. 
    This is consistent with [compare]; in particular, [undef]=[undef].
 *)

val min: t -> t -> t
(** Returns the smallest of its arguments. *)

val max: t -> t -> t
(** Returns the largest of its arguments. *)

val leq: t -> t -> bool
(** Less than or equal. *)

val geq: t -> t -> bool
(** Greater than or equal. *)

val lt: t -> t -> bool
(** Less than (not equal). *)

val gt: t -> t -> bool
(** Greater than (not equal). *)


(** {1 Conversions} *)

val to_bigint: t -> Z.t
val to_int: t -> int
val to_int32: t -> int32
val to_int64: t -> int64
val to_nativeint: t -> nativeint
(** Convert to integer by truncation.
    Raises a [Divide_by_zero] if the argument is an infinity or undefined. 
    Raises a [Z.Overflow] if the result does not fit in the destination
    type.
*)

val to_string: t -> string
(** Converts to human-readable, decimal, [/]-separated rational. *)

val to_float: t -> float
(** Converts to a floating-point number, using the current 
    floating-point rounding mode.  With the default rounding mode,
    the result is the floating-point number closest to the given
    rational; ties break to even mantissa. *)

(** {1 Arithmetic operations} *)

(**
   In all operations, the result is [undef] if one argument is [undef].
   Other operations can return [undef]: such as [inf]-[inf], [inf]*0, 0/0.
 *)

val neg: t -> t
(** Negation. *)

val abs: t -> t
(** Absolute value. *)

val add: t -> t -> t
(** Addition. *)

val sub: t -> t -> t
(** Subtraction. We have [sub x y] = [add x (neg y)]. *)

val mul: t -> t -> t
(** Multiplication. *)

val inv: t -> t
(** Inverse.
    Note that [inv 0] is defined, and equals [inf].
 *)

val div: t -> t -> t
(** Division.
    We have [div x y] = [mul x (inv y)], and [inv x] = [div one x].
 *)

val mul_2exp: t -> int -> t
(** [mul_2exp x n] multiplies [x] by 2 to the power of [n]. *)

val div_2exp: t -> int -> t
(** [div_2exp x n] divides [x] by 2 to the power of [n]. *)


(** {1 Printing} *)

val print: t -> unit
(** Prints the argument on the standard output. *)

val output: out_channel -> t -> unit
(** Prints the argument on the specified channel.
    Also intended to be used as [%a] format printer in [Printf.printf].
 *)

val sprint: unit -> t -> string
(** To be used as [%a] format printer in [Printf.sprintf]. *)

val bprint: Buffer.t -> t -> unit
(** To be used as [%a] format printer in [Printf.bprintf]. *)

val pp_print: Format.formatter -> t -> unit
(** Prints the argument on the specified formatter. 
    Also intended to be used as [%a] format printer in [Format.printf].
 *)


(** {1 Prefix and infix operators} *)

(**
   Classic prefix and infix [int] operators are redefined on [t].
*)

val (~-): t -> t
(** Negation [neg]. *)

val (~+): t -> t
(** Identity. *)

val (+): t -> t -> t
(** Addition [add]. *)

val (-): t -> t -> t
(** Subtraction [sub]. *)

val ( * ): t -> t -> t
(** Multiplication [mul]. *)

val (/): t -> t -> t
(** Division [div]. *)

val (lsl): t -> int -> t
(** Multiplication by a power of two [mul_2exp]. *)

val (asr): t -> int -> t
(** Division by a power of two [shift_right]. *)

val (~$): int -> t 
(** Conversion from [int]. *)

val (//): int -> int -> t
(** Creates a rational from two [int]s. *)

val (~$$): Z.t -> t 
(** Conversion from [Z.t]. *)

val (///): Z.t -> Z.t -> t
(** Creates a rational from two [Z.t]. *)