This file is indexed.

/usr/include/llvm-4.0/llvm/ADT/APFloat.h is in llvm-4.0-dev 1:4.0.1-10.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
//===- llvm/ADT/APFloat.h - Arbitrary Precision Floating Point ---*- C++ -*-==//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief
/// This file declares a class to represent arbitrary precision floating point
/// values and provide a variety of arithmetic operations on them.
///
//===----------------------------------------------------------------------===//

#ifndef LLVM_ADT_APFLOAT_H
#define LLVM_ADT_APFLOAT_H

#include "llvm/ADT/APInt.h"
#include "llvm/Support/ErrorHandling.h"
#include <memory>

namespace llvm {

struct fltSemantics;
class APSInt;
class StringRef;
class APFloat;
class raw_ostream;

template <typename T> class SmallVectorImpl;

/// Enum that represents what fraction of the LSB truncated bits of an fp number
/// represent.
///
/// This essentially combines the roles of guard and sticky bits.
enum lostFraction { // Example of truncated bits:
  lfExactlyZero,    // 000000
  lfLessThanHalf,   // 0xxxxx  x's not all zero
  lfExactlyHalf,    // 100000
  lfMoreThanHalf    // 1xxxxx  x's not all zero
};

/// \brief A self-contained host- and target-independent arbitrary-precision
/// floating-point software implementation.
///
/// APFloat uses bignum integer arithmetic as provided by static functions in
/// the APInt class.  The library will work with bignum integers whose parts are
/// any unsigned type at least 16 bits wide, but 64 bits is recommended.
///
/// Written for clarity rather than speed, in particular with a view to use in
/// the front-end of a cross compiler so that target arithmetic can be correctly
/// performed on the host.  Performance should nonetheless be reasonable,
/// particularly for its intended use.  It may be useful as a base
/// implementation for a run-time library during development of a faster
/// target-specific one.
///
/// All 5 rounding modes in the IEEE-754R draft are handled correctly for all
/// implemented operations.  Currently implemented operations are add, subtract,
/// multiply, divide, fused-multiply-add, conversion-to-float,
/// conversion-to-integer and conversion-from-integer.  New rounding modes
/// (e.g. away from zero) can be added with three or four lines of code.
///
/// Four formats are built-in: IEEE single precision, double precision,
/// quadruple precision, and x87 80-bit extended double (when operating with
/// full extended precision).  Adding a new format that obeys IEEE semantics
/// only requires adding two lines of code: a declaration and definition of the
/// format.
///
/// All operations return the status of that operation as an exception bit-mask,
/// so multiple operations can be done consecutively with their results or-ed
/// together.  The returned status can be useful for compiler diagnostics; e.g.,
/// inexact, underflow and overflow can be easily diagnosed on constant folding,
/// and compiler optimizers can determine what exceptions would be raised by
/// folding operations and optimize, or perhaps not optimize, accordingly.
///
/// At present, underflow tininess is detected after rounding; it should be
/// straight forward to add support for the before-rounding case too.
///
/// The library reads hexadecimal floating point numbers as per C99, and
/// correctly rounds if necessary according to the specified rounding mode.
/// Syntax is required to have been validated by the caller.  It also converts
/// floating point numbers to hexadecimal text as per the C99 %a and %A
/// conversions.  The output precision (or alternatively the natural minimal
/// precision) can be specified; if the requested precision is less than the
/// natural precision the output is correctly rounded for the specified rounding
/// mode.
///
/// It also reads decimal floating point numbers and correctly rounds according
/// to the specified rounding mode.
///
/// Conversion to decimal text is not currently implemented.
///
/// Non-zero finite numbers are represented internally as a sign bit, a 16-bit
/// signed exponent, and the significand as an array of integer parts.  After
/// normalization of a number of precision P the exponent is within the range of
/// the format, and if the number is not denormal the P-th bit of the
/// significand is set as an explicit integer bit.  For denormals the most
/// significant bit is shifted right so that the exponent is maintained at the
/// format's minimum, so that the smallest denormal has just the least
/// significant bit of the significand set.  The sign of zeroes and infinities
/// is significant; the exponent and significand of such numbers is not stored,
/// but has a known implicit (deterministic) value: 0 for the significands, 0
/// for zero exponent, all 1 bits for infinity exponent.  For NaNs the sign and
/// significand are deterministic, although not really meaningful, and preserved
/// in non-conversion operations.  The exponent is implicitly all 1 bits.
///
/// APFloat does not provide any exception handling beyond default exception
/// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause
/// by encoding Signaling NaNs with the first bit of its trailing significand as
/// 0.
///
/// TODO
/// ====
///
/// Some features that may or may not be worth adding:
///
/// Binary to decimal conversion (hard).
///
/// Optional ability to detect underflow tininess before rounding.
///
/// New formats: x87 in single and double precision mode (IEEE apart from
/// extended exponent range) (hard).
///
/// New operations: sqrt, IEEE remainder, C90 fmod, nexttoward.
///

// This is the common type definitions shared by APFloat and its internal
// implementation classes. This struct should not define any non-static data
// members.
struct APFloatBase {
  /// A signed type to represent a floating point numbers unbiased exponent.
  typedef signed short ExponentType;

  /// \name Floating Point Semantics.
  /// @{

  static const fltSemantics &IEEEhalf();
  static const fltSemantics &IEEEsingle();
  static const fltSemantics &IEEEdouble();
  static const fltSemantics &IEEEquad();
  static const fltSemantics &PPCDoubleDouble();
  static const fltSemantics &x87DoubleExtended();

  /// A Pseudo fltsemantic used to construct APFloats that cannot conflict with
  /// anything real.
  static const fltSemantics &Bogus();

  /// @}

  /// IEEE-754R 5.11: Floating Point Comparison Relations.
  enum cmpResult {
    cmpLessThan,
    cmpEqual,
    cmpGreaterThan,
    cmpUnordered
  };

  /// IEEE-754R 4.3: Rounding-direction attributes.
  enum roundingMode {
    rmNearestTiesToEven,
    rmTowardPositive,
    rmTowardNegative,
    rmTowardZero,
    rmNearestTiesToAway
  };

  /// IEEE-754R 7: Default exception handling.
  ///
  /// opUnderflow or opOverflow are always returned or-ed with opInexact.
  enum opStatus {
    opOK = 0x00,
    opInvalidOp = 0x01,
    opDivByZero = 0x02,
    opOverflow = 0x04,
    opUnderflow = 0x08,
    opInexact = 0x10
  };

  /// Category of internally-represented number.
  enum fltCategory {
    fcInfinity,
    fcNaN,
    fcNormal,
    fcZero
  };

  /// Convenience enum used to construct an uninitialized APFloat.
  enum uninitializedTag {
    uninitialized
  };

  /// \brief Enumeration of \c ilogb error results.
  enum IlogbErrorKinds {
    IEK_Zero = INT_MIN + 1,
    IEK_NaN = INT_MIN,
    IEK_Inf = INT_MAX
  };

  static unsigned int semanticsPrecision(const fltSemantics &);
  static ExponentType semanticsMinExponent(const fltSemantics &);
  static ExponentType semanticsMaxExponent(const fltSemantics &);
  static unsigned int semanticsSizeInBits(const fltSemantics &);

  /// Returns the size of the floating point number (in bits) in the given
  /// semantics.
  static unsigned getSizeInBits(const fltSemantics &Sem);
};

namespace detail {

class IEEEFloat final : public APFloatBase {
public:
  /// \name Constructors
  /// @{

  IEEEFloat(const fltSemantics &); // Default construct to 0.0
  IEEEFloat(const fltSemantics &, integerPart);
  IEEEFloat(const fltSemantics &, uninitializedTag);
  IEEEFloat(const fltSemantics &, const APInt &);
  explicit IEEEFloat(double d);
  explicit IEEEFloat(float f);
  IEEEFloat(const IEEEFloat &);
  IEEEFloat(IEEEFloat &&);
  ~IEEEFloat();

  /// @}

  /// \brief Returns whether this instance allocated memory.
  bool needsCleanup() const { return partCount() > 1; }

  /// \name Convenience "constructors"
  /// @{

  /// @}

  /// Used to insert APFloat objects, or objects that contain APFloat objects,
  /// into FoldingSets.
  void Profile(FoldingSetNodeID &NID) const;

  /// \name Arithmetic
  /// @{

  opStatus add(const IEEEFloat &, roundingMode);
  opStatus subtract(const IEEEFloat &, roundingMode);
  opStatus multiply(const IEEEFloat &, roundingMode);
  opStatus divide(const IEEEFloat &, roundingMode);
  /// IEEE remainder.
  opStatus remainder(const IEEEFloat &);
  /// C fmod, or llvm frem.
  opStatus mod(const IEEEFloat &);
  opStatus fusedMultiplyAdd(const IEEEFloat &, const IEEEFloat &, roundingMode);
  opStatus roundToIntegral(roundingMode);
  /// IEEE-754R 5.3.1: nextUp/nextDown.
  opStatus next(bool nextDown);

  /// \brief Operator+ overload which provides the default
  /// \c nmNearestTiesToEven rounding mode and *no* error checking.
  IEEEFloat operator+(const IEEEFloat &RHS) const {
    IEEEFloat Result = *this;
    Result.add(RHS, rmNearestTiesToEven);
    return Result;
  }

  /// \brief Operator- overload which provides the default
  /// \c nmNearestTiesToEven rounding mode and *no* error checking.
  IEEEFloat operator-(const IEEEFloat &RHS) const {
    IEEEFloat Result = *this;
    Result.subtract(RHS, rmNearestTiesToEven);
    return Result;
  }

  /// \brief Operator* overload which provides the default
  /// \c nmNearestTiesToEven rounding mode and *no* error checking.
  IEEEFloat operator*(const IEEEFloat &RHS) const {
    IEEEFloat Result = *this;
    Result.multiply(RHS, rmNearestTiesToEven);
    return Result;
  }

  /// \brief Operator/ overload which provides the default
  /// \c nmNearestTiesToEven rounding mode and *no* error checking.
  IEEEFloat operator/(const IEEEFloat &RHS) const {
    IEEEFloat Result = *this;
    Result.divide(RHS, rmNearestTiesToEven);
    return Result;
  }

  /// @}

  /// \name Sign operations.
  /// @{

  void changeSign();
  void clearSign();
  void copySign(const IEEEFloat &);

  /// \brief A static helper to produce a copy of an APFloat value with its sign
  /// copied from some other APFloat.
  static IEEEFloat copySign(IEEEFloat Value, const IEEEFloat &Sign) {
    Value.copySign(Sign);
    return Value;
  }

  /// @}

  /// \name Conversions
  /// @{

  opStatus convert(const fltSemantics &, roundingMode, bool *);
  opStatus convertToInteger(integerPart *, unsigned int, bool, roundingMode,
                            bool *) const;
  opStatus convertToInteger(APSInt &, roundingMode, bool *) const;
  opStatus convertFromAPInt(const APInt &, bool, roundingMode);
  opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int,
                                          bool, roundingMode);
  opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int,
                                          bool, roundingMode);
  opStatus convertFromString(StringRef, roundingMode);
  APInt bitcastToAPInt() const;
  double convertToDouble() const;
  float convertToFloat() const;

  /// @}

  /// The definition of equality is not straightforward for floating point, so
  /// we won't use operator==.  Use one of the following, or write whatever it
  /// is you really mean.
  bool operator==(const IEEEFloat &) const = delete;

  /// IEEE comparison with another floating point number (NaNs compare
  /// unordered, 0==-0).
  cmpResult compare(const IEEEFloat &) const;

  /// Bitwise comparison for equality (QNaNs compare equal, 0!=-0).
  bool bitwiseIsEqual(const IEEEFloat &) const;

  /// Write out a hexadecimal representation of the floating point value to DST,
  /// which must be of sufficient size, in the C99 form [-]0xh.hhhhp[+-]d.
  /// Return the number of characters written, excluding the terminating NUL.
  unsigned int convertToHexString(char *dst, unsigned int hexDigits,
                                  bool upperCase, roundingMode) const;

  /// \name IEEE-754R 5.7.2 General operations.
  /// @{

  /// IEEE-754R isSignMinus: Returns true if and only if the current value is
  /// negative.
  ///
  /// This applies to zeros and NaNs as well.
  bool isNegative() const { return sign; }

  /// IEEE-754R isNormal: Returns true if and only if the current value is normal.
  ///
  /// This implies that the current value of the float is not zero, subnormal,
  /// infinite, or NaN following the definition of normality from IEEE-754R.
  bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }

  /// Returns true if and only if the current value is zero, subnormal, or
  /// normal.
  ///
  /// This means that the value is not infinite or NaN.
  bool isFinite() const { return !isNaN() && !isInfinity(); }

  /// Returns true if and only if the float is plus or minus zero.
  bool isZero() const { return category == fcZero; }

  /// IEEE-754R isSubnormal(): Returns true if and only if the float is a
  /// denormal.
  bool isDenormal() const;

  /// IEEE-754R isInfinite(): Returns true if and only if the float is infinity.
  bool isInfinity() const { return category == fcInfinity; }

  /// Returns true if and only if the float is a quiet or signaling NaN.
  bool isNaN() const { return category == fcNaN; }

  /// Returns true if and only if the float is a signaling NaN.
  bool isSignaling() const;

  /// @}

  /// \name Simple Queries
  /// @{

  fltCategory getCategory() const { return category; }
  const fltSemantics &getSemantics() const { return *semantics; }
  bool isNonZero() const { return category != fcZero; }
  bool isFiniteNonZero() const { return isFinite() && !isZero(); }
  bool isPosZero() const { return isZero() && !isNegative(); }
  bool isNegZero() const { return isZero() && isNegative(); }

  /// Returns true if and only if the number has the smallest possible non-zero
  /// magnitude in the current semantics.
  bool isSmallest() const;

  /// Returns true if and only if the number has the largest possible finite
  /// magnitude in the current semantics.
  bool isLargest() const;
  
  /// Returns true if and only if the number is an exact integer.
  bool isInteger() const;

  /// @}

  IEEEFloat &operator=(const IEEEFloat &);
  IEEEFloat &operator=(IEEEFloat &&);

  /// \brief Overload to compute a hash code for an APFloat value.
  ///
  /// Note that the use of hash codes for floating point values is in general
  /// frought with peril. Equality is hard to define for these values. For
  /// example, should negative and positive zero hash to different codes? Are
  /// they equal or not? This hash value implementation specifically
  /// emphasizes producing different codes for different inputs in order to
  /// be used in canonicalization and memoization. As such, equality is
  /// bitwiseIsEqual, and 0 != -0.
  friend hash_code hash_value(const IEEEFloat &Arg);

  /// Converts this value into a decimal string.
  ///
  /// \param FormatPrecision The maximum number of digits of
  ///   precision to output.  If there are fewer digits available,
  ///   zero padding will not be used unless the value is
  ///   integral and small enough to be expressed in
  ///   FormatPrecision digits.  0 means to use the natural
  ///   precision of the number.
  /// \param FormatMaxPadding The maximum number of zeros to
  ///   consider inserting before falling back to scientific
  ///   notation.  0 means to always use scientific notation.
  ///
  /// Number       Precision    MaxPadding      Result
  /// ------       ---------    ----------      ------
  /// 1.01E+4              5             2       10100
  /// 1.01E+4              4             2       1.01E+4
  /// 1.01E+4              5             1       1.01E+4
  /// 1.01E-2              5             2       0.0101
  /// 1.01E-2              4             2       0.0101
  /// 1.01E-2              4             1       1.01E-2
  void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
                unsigned FormatMaxPadding = 3) const;

  /// If this value has an exact multiplicative inverse, store it in inv and
  /// return true.
  bool getExactInverse(IEEEFloat *inv) const;

  /// \brief Returns the exponent of the internal representation of the APFloat.
  ///
  /// Because the radix of APFloat is 2, this is equivalent to floor(log2(x)).
  /// For special APFloat values, this returns special error codes:
  ///
  ///   NaN -> \c IEK_NaN
  ///   0   -> \c IEK_Zero
  ///   Inf -> \c IEK_Inf
  ///
  friend int ilogb(const IEEEFloat &Arg);

  /// \brief Returns: X * 2^Exp for integral exponents.
  friend IEEEFloat scalbn(IEEEFloat X, int Exp, roundingMode);

  friend IEEEFloat frexp(const IEEEFloat &X, int &Exp, roundingMode);

  /// \name Special value setters.
  /// @{

  void makeLargest(bool Neg = false);
  void makeSmallest(bool Neg = false);
  void makeNaN(bool SNaN = false, bool Neg = false,
               const APInt *fill = nullptr);
  void makeInf(bool Neg = false);
  void makeZero(bool Neg = false);
  void makeQuiet();

  /// Returns the smallest (by magnitude) normalized finite number in the given
  /// semantics.
  ///
  /// \param Negative - True iff the number should be negative
  void makeSmallestNormalized(bool Negative = false);

  /// @}

  cmpResult compareAbsoluteValue(const IEEEFloat &) const;

private:
  /// \name Simple Queries
  /// @{

  integerPart *significandParts();
  const integerPart *significandParts() const;
  unsigned int partCount() const;

  /// @}

  /// \name Significand operations.
  /// @{

  integerPart addSignificand(const IEEEFloat &);
  integerPart subtractSignificand(const IEEEFloat &, integerPart);
  lostFraction addOrSubtractSignificand(const IEEEFloat &, bool subtract);
  lostFraction multiplySignificand(const IEEEFloat &, const IEEEFloat *);
  lostFraction divideSignificand(const IEEEFloat &);
  void incrementSignificand();
  void initialize(const fltSemantics *);
  void shiftSignificandLeft(unsigned int);
  lostFraction shiftSignificandRight(unsigned int);
  unsigned int significandLSB() const;
  unsigned int significandMSB() const;
  void zeroSignificand();
  /// Return true if the significand excluding the integral bit is all ones.
  bool isSignificandAllOnes() const;
  /// Return true if the significand excluding the integral bit is all zeros.
  bool isSignificandAllZeros() const;

  /// @}

  /// \name Arithmetic on special values.
  /// @{

  opStatus addOrSubtractSpecials(const IEEEFloat &, bool subtract);
  opStatus divideSpecials(const IEEEFloat &);
  opStatus multiplySpecials(const IEEEFloat &);
  opStatus modSpecials(const IEEEFloat &);

  /// @}

  /// \name Miscellany
  /// @{

  bool convertFromStringSpecials(StringRef str);
  opStatus normalize(roundingMode, lostFraction);
  opStatus addOrSubtract(const IEEEFloat &, roundingMode, bool subtract);
  opStatus handleOverflow(roundingMode);
  bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const;
  opStatus convertToSignExtendedInteger(integerPart *, unsigned int, bool,
                                        roundingMode, bool *) const;
  opStatus convertFromUnsignedParts(const integerPart *, unsigned int,
                                    roundingMode);
  opStatus convertFromHexadecimalString(StringRef, roundingMode);
  opStatus convertFromDecimalString(StringRef, roundingMode);
  char *convertNormalToHexString(char *, unsigned int, bool,
                                 roundingMode) const;
  opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int,
                                        roundingMode);

  /// @}

  APInt convertHalfAPFloatToAPInt() const;
  APInt convertFloatAPFloatToAPInt() const;
  APInt convertDoubleAPFloatToAPInt() const;
  APInt convertQuadrupleAPFloatToAPInt() const;
  APInt convertF80LongDoubleAPFloatToAPInt() const;
  APInt convertPPCDoubleDoubleAPFloatToAPInt() const;
  void initFromAPInt(const fltSemantics *Sem, const APInt &api);
  void initFromHalfAPInt(const APInt &api);
  void initFromFloatAPInt(const APInt &api);
  void initFromDoubleAPInt(const APInt &api);
  void initFromQuadrupleAPInt(const APInt &api);
  void initFromF80LongDoubleAPInt(const APInt &api);
  void initFromPPCDoubleDoubleAPInt(const APInt &api);

  void assign(const IEEEFloat &);
  void copySignificand(const IEEEFloat &);
  void freeSignificand();

  /// Note: this must be the first data member.
  /// The semantics that this value obeys.
  const fltSemantics *semantics;

  /// A binary fraction with an explicit integer bit.
  ///
  /// The significand must be at least one bit wider than the target precision.
  union Significand {
    integerPart part;
    integerPart *parts;
  } significand;

  /// The signed unbiased exponent of the value.
  ExponentType exponent;

  /// What kind of floating point number this is.
  ///
  /// Only 2 bits are required, but VisualStudio incorrectly sign extends it.
  /// Using the extra bit keeps it from failing under VisualStudio.
  fltCategory category : 3;

  /// Sign bit of the number.
  unsigned int sign : 1;
};

hash_code hash_value(const IEEEFloat &Arg);
int ilogb(const IEEEFloat &Arg);
IEEEFloat scalbn(IEEEFloat X, int Exp, IEEEFloat::roundingMode);
IEEEFloat frexp(const IEEEFloat &Val, int &Exp, IEEEFloat::roundingMode RM);

// This mode implements more precise float in terms of two APFloats.
// The interface and layout is designed for arbitray underlying semantics,
// though currently only PPCDoubleDouble semantics are supported, whose
// corresponding underlying semantics are IEEEdouble.
class DoubleAPFloat final : public APFloatBase {
  // Note: this must be the first data member.
  const fltSemantics *Semantics;
  std::unique_ptr<APFloat[]> Floats;

  opStatus addImpl(const APFloat &a, const APFloat &aa, const APFloat &c,
                   const APFloat &cc, roundingMode RM);

  opStatus addWithSpecial(const DoubleAPFloat &LHS, const DoubleAPFloat &RHS,
                          DoubleAPFloat &Out, roundingMode RM);

public:
  DoubleAPFloat(const fltSemantics &S);
  DoubleAPFloat(const fltSemantics &S, uninitializedTag);
  DoubleAPFloat(const fltSemantics &S, integerPart);
  DoubleAPFloat(const fltSemantics &S, const APInt &I);
  DoubleAPFloat(const fltSemantics &S, APFloat &&First, APFloat &&Second);
  DoubleAPFloat(const DoubleAPFloat &RHS);
  DoubleAPFloat(DoubleAPFloat &&RHS);

  DoubleAPFloat &operator=(const DoubleAPFloat &RHS);

  DoubleAPFloat &operator=(DoubleAPFloat &&RHS) {
    if (this != &RHS) {
      this->~DoubleAPFloat();
      new (this) DoubleAPFloat(std::move(RHS));
    }
    return *this;
  }

  bool needsCleanup() const { return Floats != nullptr; }

  APFloat &getFirst() { return Floats[0]; }
  const APFloat &getFirst() const { return Floats[0]; }
  APFloat &getSecond() { return Floats[1]; }
  const APFloat &getSecond() const { return Floats[1]; }

  opStatus add(const DoubleAPFloat &RHS, roundingMode RM);
  opStatus subtract(const DoubleAPFloat &RHS, roundingMode RM);
  void changeSign();
  cmpResult compareAbsoluteValue(const DoubleAPFloat &RHS) const;

  fltCategory getCategory() const;
  bool isNegative() const;

  void makeInf(bool Neg);
  void makeNaN(bool SNaN, bool Neg, const APInt *fill);
};

} // End detail namespace

// This is a interface class that is currently forwarding functionalities from
// detail::IEEEFloat.
class APFloat : public APFloatBase {
  typedef detail::IEEEFloat IEEEFloat;
  typedef detail::DoubleAPFloat DoubleAPFloat;

  static_assert(std::is_standard_layout<IEEEFloat>::value, "");

  union Storage {
    const fltSemantics *semantics;
    IEEEFloat IEEE;
    DoubleAPFloat Double;

    explicit Storage(IEEEFloat F, const fltSemantics &S);
    explicit Storage(DoubleAPFloat F, const fltSemantics &S)
        : Double(std::move(F)) {
      assert(&S == &PPCDoubleDouble());
    }

    template <typename... ArgTypes>
    Storage(const fltSemantics &Semantics, ArgTypes &&... Args) {
      if (usesLayout<IEEEFloat>(Semantics)) {
        new (&IEEE) IEEEFloat(Semantics, std::forward<ArgTypes>(Args)...);
        return;
      }
      if (usesLayout<DoubleAPFloat>(Semantics)) {
        new (&Double) DoubleAPFloat(Semantics, std::forward<ArgTypes>(Args)...);
        return;
      }
      llvm_unreachable("Unexpected semantics");
    }

    ~Storage() {
      if (usesLayout<IEEEFloat>(*semantics)) {
        IEEE.~IEEEFloat();
        return;
      }
      if (usesLayout<DoubleAPFloat>(*semantics)) {
        Double.~DoubleAPFloat();
        return;
      }
      llvm_unreachable("Unexpected semantics");
    }

    Storage(const Storage &RHS) {
      if (usesLayout<IEEEFloat>(*RHS.semantics)) {
        new (this) IEEEFloat(RHS.IEEE);
        return;
      }
      if (usesLayout<DoubleAPFloat>(*RHS.semantics)) {
        new (this) DoubleAPFloat(RHS.Double);
        return;
      }
      llvm_unreachable("Unexpected semantics");
    }

    Storage(Storage &&RHS) {
      if (usesLayout<IEEEFloat>(*RHS.semantics)) {
        new (this) IEEEFloat(std::move(RHS.IEEE));
        return;
      }
      if (usesLayout<DoubleAPFloat>(*RHS.semantics)) {
        new (this) DoubleAPFloat(std::move(RHS.Double));
        return;
      }
      llvm_unreachable("Unexpected semantics");
    }

    Storage &operator=(const Storage &RHS) {
      if (usesLayout<IEEEFloat>(*semantics) &&
          usesLayout<IEEEFloat>(*RHS.semantics)) {
        IEEE = RHS.IEEE;
      } else if (usesLayout<DoubleAPFloat>(*semantics) &&
                 usesLayout<DoubleAPFloat>(*RHS.semantics)) {
        Double = RHS.Double;
      } else if (this != &RHS) {
        this->~Storage();
        new (this) Storage(RHS);
      }
      return *this;
    }

    Storage &operator=(Storage &&RHS) {
      if (usesLayout<IEEEFloat>(*semantics) &&
          usesLayout<IEEEFloat>(*RHS.semantics)) {
        IEEE = std::move(RHS.IEEE);
      } else if (usesLayout<DoubleAPFloat>(*semantics) &&
                 usesLayout<DoubleAPFloat>(*RHS.semantics)) {
        Double = std::move(RHS.Double);
      } else if (this != &RHS) {
        this->~Storage();
        new (this) Storage(std::move(RHS));
      }
      return *this;
    }
  } U;

  template <typename T> static bool usesLayout(const fltSemantics &Semantics) {
    static_assert(std::is_same<T, IEEEFloat>::value ||
                  std::is_same<T, DoubleAPFloat>::value, "");
    if (std::is_same<T, DoubleAPFloat>::value) {
      return &Semantics == &PPCDoubleDouble();
    }
    return &Semantics != &PPCDoubleDouble();
  }

  IEEEFloat &getIEEE() {
    if (usesLayout<IEEEFloat>(*U.semantics))
      return U.IEEE;
    if (usesLayout<DoubleAPFloat>(*U.semantics))
      return U.Double.getFirst().U.IEEE;
    llvm_unreachable("Unexpected semantics");
  }

  const IEEEFloat &getIEEE() const {
    if (usesLayout<IEEEFloat>(*U.semantics))
      return U.IEEE;
    if (usesLayout<DoubleAPFloat>(*U.semantics))
      return U.Double.getFirst().U.IEEE;
    llvm_unreachable("Unexpected semantics");
  }

  void makeZero(bool Neg) { getIEEE().makeZero(Neg); }

  void makeInf(bool Neg) {
    if (usesLayout<IEEEFloat>(*U.semantics))
      return U.IEEE.makeInf(Neg);
    if (usesLayout<DoubleAPFloat>(*U.semantics))
      return U.Double.makeInf(Neg);
    llvm_unreachable("Unexpected semantics");
  }

  void makeNaN(bool SNaN, bool Neg, const APInt *fill) {
    getIEEE().makeNaN(SNaN, Neg, fill);
  }

  void makeLargest(bool Neg) { getIEEE().makeLargest(Neg); }

  void makeSmallest(bool Neg) { getIEEE().makeSmallest(Neg); }

  void makeSmallestNormalized(bool Neg) {
    getIEEE().makeSmallestNormalized(Neg);
  }

  // FIXME: This is due to clang 3.3 (or older version) always checks for the
  // default constructor in an array aggregate initialization, even if no
  // elements in the array is default initialized.
  APFloat() : U(IEEEdouble()) {
    llvm_unreachable("This is a workaround for old clang.");
  }

  explicit APFloat(IEEEFloat F, const fltSemantics &S) : U(std::move(F), S) {}
  explicit APFloat(DoubleAPFloat F, const fltSemantics &S)
      : U(std::move(F), S) {}

  cmpResult compareAbsoluteValue(const APFloat &RHS) const {
    assert(&getSemantics() == &RHS.getSemantics());
    if (usesLayout<IEEEFloat>(getSemantics()))
      return U.IEEE.compareAbsoluteValue(RHS.U.IEEE);
    if (usesLayout<DoubleAPFloat>(getSemantics()))
      return U.Double.compareAbsoluteValue(RHS.U.Double);
    llvm_unreachable("Unexpected semantics");
  }

public:
  APFloat(const fltSemantics &Semantics) : U(Semantics) {}
  APFloat(const fltSemantics &Semantics, StringRef S);
  APFloat(const fltSemantics &Semantics, integerPart I) : U(Semantics, I) {}
  // TODO: Remove this constructor. This isn't faster than the first one.
  APFloat(const fltSemantics &Semantics, uninitializedTag)
      : U(Semantics, uninitialized) {}
  APFloat(const fltSemantics &Semantics, const APInt &I) : U(Semantics, I) {}
  explicit APFloat(double d) : U(IEEEFloat(d), IEEEdouble()) {}
  explicit APFloat(float f) : U(IEEEFloat(f), IEEEsingle()) {}
  APFloat(const APFloat &RHS) = default;
  APFloat(APFloat &&RHS) = default;

  ~APFloat() = default;

  bool needsCleanup() const {
    if (usesLayout<IEEEFloat>(getSemantics()))
      return U.IEEE.needsCleanup();
    if (usesLayout<DoubleAPFloat>(getSemantics()))
      return U.Double.needsCleanup();
    llvm_unreachable("Unexpected semantics");
  }

  /// Factory for Positive and Negative Zero.
  ///
  /// \param Negative True iff the number should be negative.
  static APFloat getZero(const fltSemantics &Sem, bool Negative = false) {
    APFloat Val(Sem, uninitialized);
    Val.makeZero(Negative);
    return Val;
  }

  /// Factory for Positive and Negative Infinity.
  ///
  /// \param Negative True iff the number should be negative.
  static APFloat getInf(const fltSemantics &Sem, bool Negative = false) {
    APFloat Val(Sem, uninitialized);
    Val.makeInf(Negative);
    return Val;
  }

  /// Factory for NaN values.
  ///
  /// \param Negative - True iff the NaN generated should be negative.
  /// \param type - The unspecified fill bits for creating the NaN, 0 by
  /// default.  The value is truncated as necessary.
  static APFloat getNaN(const fltSemantics &Sem, bool Negative = false,
                        unsigned type = 0) {
    if (type) {
      APInt fill(64, type);
      return getQNaN(Sem, Negative, &fill);
    } else {
      return getQNaN(Sem, Negative, nullptr);
    }
  }

  /// Factory for QNaN values.
  static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false,
                         const APInt *payload = nullptr) {
    APFloat Val(Sem, uninitialized);
    Val.makeNaN(false, Negative, payload);
    return Val;
  }

  /// Factory for SNaN values.
  static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false,
                         const APInt *payload = nullptr) {
    APFloat Val(Sem, uninitialized);
    Val.makeNaN(true, Negative, payload);
    return Val;
  }

  /// Returns the largest finite number in the given semantics.
  ///
  /// \param Negative - True iff the number should be negative
  static APFloat getLargest(const fltSemantics &Sem, bool Negative = false) {
    APFloat Val(Sem, uninitialized);
    Val.makeLargest(Negative);
    return Val;
  }

  /// Returns the smallest (by magnitude) finite number in the given semantics.
  /// Might be denormalized, which implies a relative loss of precision.
  ///
  /// \param Negative - True iff the number should be negative
  static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false) {
    APFloat Val(Sem, uninitialized);
    Val.makeSmallest(Negative);
    return Val;
  }

  /// Returns the smallest (by magnitude) normalized finite number in the given
  /// semantics.
  ///
  /// \param Negative - True iff the number should be negative
  static APFloat getSmallestNormalized(const fltSemantics &Sem,
                                       bool Negative = false) {
    APFloat Val(Sem, uninitialized);
    Val.makeSmallestNormalized(Negative);
    return Val;
  }

  /// Returns a float which is bitcasted from an all one value int.
  ///
  /// \param BitWidth - Select float type
  /// \param isIEEE   - If 128 bit number, select between PPC and IEEE
  static APFloat getAllOnesValue(unsigned BitWidth, bool isIEEE = false);

  void Profile(FoldingSetNodeID &NID) const { getIEEE().Profile(NID); }

  opStatus add(const APFloat &RHS, roundingMode RM) {
    if (usesLayout<IEEEFloat>(getSemantics()))
      return U.IEEE.add(RHS.U.IEEE, RM);
    if (usesLayout<DoubleAPFloat>(getSemantics()))
      return U.Double.add(RHS.U.Double, RM);
    llvm_unreachable("Unexpected semantics");
  }
  opStatus subtract(const APFloat &RHS, roundingMode RM) {
    if (usesLayout<IEEEFloat>(getSemantics()))
      return U.IEEE.subtract(RHS.U.IEEE, RM);
    if (usesLayout<DoubleAPFloat>(getSemantics()))
      return U.Double.subtract(RHS.U.Double, RM);
    llvm_unreachable("Unexpected semantics");
  }
  opStatus multiply(const APFloat &RHS, roundingMode RM) {
    return getIEEE().multiply(RHS.getIEEE(), RM);
  }
  opStatus divide(const APFloat &RHS, roundingMode RM) {
    return getIEEE().divide(RHS.getIEEE(), RM);
  }
  opStatus remainder(const APFloat &RHS) {
    return getIEEE().remainder(RHS.getIEEE());
  }
  opStatus mod(const APFloat &RHS) { return getIEEE().mod(RHS.getIEEE()); }
  opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend,
                            roundingMode RM) {
    return getIEEE().fusedMultiplyAdd(Multiplicand.getIEEE(), Addend.getIEEE(),
                                      RM);
  }
  opStatus roundToIntegral(roundingMode RM) {
    return getIEEE().roundToIntegral(RM);
  }
  opStatus next(bool nextDown) { return getIEEE().next(nextDown); }

  APFloat operator+(const APFloat &RHS) const {
    return APFloat(getIEEE() + RHS.getIEEE(), getSemantics());
  }

  APFloat operator-(const APFloat &RHS) const {
    return APFloat(getIEEE() - RHS.getIEEE(), getSemantics());
  }

  APFloat operator*(const APFloat &RHS) const {
    return APFloat(getIEEE() * RHS.getIEEE(), getSemantics());
  }

  APFloat operator/(const APFloat &RHS) const {
    return APFloat(getIEEE() / RHS.getIEEE(), getSemantics());
  }

  void changeSign() { getIEEE().changeSign(); }
  void clearSign() { getIEEE().clearSign(); }
  void copySign(const APFloat &RHS) { getIEEE().copySign(RHS.getIEEE()); }

  static APFloat copySign(APFloat Value, const APFloat &Sign) {
    return APFloat(IEEEFloat::copySign(Value.getIEEE(), Sign.getIEEE()),
                   Value.getSemantics());
  }

  opStatus convert(const fltSemantics &ToSemantics, roundingMode RM,
                   bool *losesInfo);
  opStatus convertToInteger(integerPart *Input, unsigned int Width,
                            bool IsSigned, roundingMode RM,
                            bool *IsExact) const {
    return getIEEE().convertToInteger(Input, Width, IsSigned, RM, IsExact);
  }
  opStatus convertToInteger(APSInt &Result, roundingMode RM,
                            bool *IsExact) const {
    return getIEEE().convertToInteger(Result, RM, IsExact);
  }
  opStatus convertFromAPInt(const APInt &Input, bool IsSigned,
                            roundingMode RM) {
    return getIEEE().convertFromAPInt(Input, IsSigned, RM);
  }
  opStatus convertFromSignExtendedInteger(const integerPart *Input,
                                          unsigned int InputSize, bool IsSigned,
                                          roundingMode RM) {
    return getIEEE().convertFromSignExtendedInteger(Input, InputSize, IsSigned,
                                                    RM);
  }
  opStatus convertFromZeroExtendedInteger(const integerPart *Input,
                                          unsigned int InputSize, bool IsSigned,
                                          roundingMode RM) {
    return getIEEE().convertFromZeroExtendedInteger(Input, InputSize, IsSigned,
                                                    RM);
  }
  opStatus convertFromString(StringRef, roundingMode);
  APInt bitcastToAPInt() const { return getIEEE().bitcastToAPInt(); }
  double convertToDouble() const { return getIEEE().convertToDouble(); }
  float convertToFloat() const { return getIEEE().convertToFloat(); }

  bool operator==(const APFloat &) const = delete;

  cmpResult compare(const APFloat &RHS) const {
    return getIEEE().compare(RHS.getIEEE());
  }

  bool bitwiseIsEqual(const APFloat &RHS) const {
    return getIEEE().bitwiseIsEqual(RHS.getIEEE());
  }

  unsigned int convertToHexString(char *DST, unsigned int HexDigits,
                                  bool UpperCase, roundingMode RM) const {
    return getIEEE().convertToHexString(DST, HexDigits, UpperCase, RM);
  }

  bool isZero() const { return getCategory() == fcZero; }
  bool isInfinity() const { return getCategory() == fcInfinity; }
  bool isNaN() const { return getCategory() == fcNaN; }

  bool isNegative() const { return getIEEE().isNegative(); }
  bool isDenormal() const { return getIEEE().isDenormal(); }
  bool isSignaling() const { return getIEEE().isSignaling(); }

  bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
  bool isFinite() const { return !isNaN() && !isInfinity(); }

  fltCategory getCategory() const { return getIEEE().getCategory(); }
  const fltSemantics &getSemantics() const { return *U.semantics; }
  bool isNonZero() const { return !isZero(); }
  bool isFiniteNonZero() const { return isFinite() && !isZero(); }
  bool isPosZero() const { return isZero() && !isNegative(); }
  bool isNegZero() const { return isZero() && isNegative(); }
  bool isSmallest() const { return getIEEE().isSmallest(); }
  bool isLargest() const { return getIEEE().isLargest(); }
  bool isInteger() const { return getIEEE().isInteger(); }

  APFloat &operator=(const APFloat &RHS) = default;
  APFloat &operator=(APFloat &&RHS) = default;

  void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
                unsigned FormatMaxPadding = 3) const {
    return getIEEE().toString(Str, FormatPrecision, FormatMaxPadding);
  }

  void print(raw_ostream &) const;
  void dump() const;

  bool getExactInverse(APFloat *inv) const {
    return getIEEE().getExactInverse(inv ? &inv->getIEEE() : nullptr);
  }

  // This is for internal test only.
  // TODO: Remove it after the PPCDoubleDouble transition.
  const APFloat &getSecondFloat() const {
    assert(&getSemantics() == &PPCDoubleDouble());
    return U.Double.getSecond();
  }

  friend hash_code hash_value(const APFloat &Arg);
  friend int ilogb(const APFloat &Arg) { return ilogb(Arg.getIEEE()); }
  friend APFloat scalbn(APFloat X, int Exp, roundingMode RM);
  friend APFloat frexp(const APFloat &X, int &Exp, roundingMode RM);
  friend IEEEFloat;
  friend DoubleAPFloat;
};

/// See friend declarations above.
///
/// These additional declarations are required in order to compile LLVM with IBM
/// xlC compiler.
hash_code hash_value(const APFloat &Arg);
inline APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM) {
  return APFloat(scalbn(X.getIEEE(), Exp, RM), X.getSemantics());
}

/// \brief Equivalent of C standard library function.
///
/// While the C standard says Exp is an unspecified value for infinity and nan,
/// this returns INT_MAX for infinities, and INT_MIN for NaNs.
inline APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM) {
  return APFloat(frexp(X.getIEEE(), Exp, RM), X.getSemantics());
}
/// \brief Returns the absolute value of the argument.
inline APFloat abs(APFloat X) {
  X.clearSign();
  return X;
}

/// Implements IEEE minNum semantics. Returns the smaller of the 2 arguments if
/// both are not NaN. If either argument is a NaN, returns the other argument.
LLVM_READONLY
inline APFloat minnum(const APFloat &A, const APFloat &B) {
  if (A.isNaN())
    return B;
  if (B.isNaN())
    return A;
  return (B.compare(A) == APFloat::cmpLessThan) ? B : A;
}

/// Implements IEEE maxNum semantics. Returns the larger of the 2 arguments if
/// both are not NaN. If either argument is a NaN, returns the other argument.
LLVM_READONLY
inline APFloat maxnum(const APFloat &A, const APFloat &B) {
  if (A.isNaN())
    return B;
  if (B.isNaN())
    return A;
  return (A.compare(B) == APFloat::cmpLessThan) ? B : A;
}

} // namespace llvm

#endif // LLVM_ADT_APFLOAT_H