This file is indexed.

/usr/include/llvm-4.0/llvm/ADT/STLExtras.h is in llvm-4.0-dev 1:4.0.1-10.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains some templates that are useful if you are working with the
// STL at all.
//
// No library is required when using these functions.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ADT_STLEXTRAS_H
#define LLVM_ADT_STLEXTRAS_H

#include <algorithm> // for std::all_of
#include <cassert>
#include <cstddef> // for std::size_t
#include <cstdlib> // for qsort
#include <functional>
#include <iterator>
#include <memory>
#include <tuple>
#include <utility> // for std::pair

#include "llvm/ADT/Optional.h"
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"

namespace llvm {

// Only used by compiler if both template types are the same.  Useful when
// using SFINAE to test for the existence of member functions.
template <typename T, T> struct SameType;

namespace detail {

template <typename RangeT>
using IterOfRange = decltype(std::begin(std::declval<RangeT &>()));

} // End detail namespace

//===----------------------------------------------------------------------===//
//     Extra additions to <functional>
//===----------------------------------------------------------------------===//

template<class Ty>
struct identity : public std::unary_function<Ty, Ty> {
  Ty &operator()(Ty &self) const {
    return self;
  }
  const Ty &operator()(const Ty &self) const {
    return self;
  }
};

template<class Ty>
struct less_ptr : public std::binary_function<Ty, Ty, bool> {
  bool operator()(const Ty* left, const Ty* right) const {
    return *left < *right;
  }
};

template<class Ty>
struct greater_ptr : public std::binary_function<Ty, Ty, bool> {
  bool operator()(const Ty* left, const Ty* right) const {
    return *right < *left;
  }
};

/// An efficient, type-erasing, non-owning reference to a callable. This is
/// intended for use as the type of a function parameter that is not used
/// after the function in question returns.
///
/// This class does not own the callable, so it is not in general safe to store
/// a function_ref.
template<typename Fn> class function_ref;

template<typename Ret, typename ...Params>
class function_ref<Ret(Params...)> {
  Ret (*callback)(intptr_t callable, Params ...params);
  intptr_t callable;

  template<typename Callable>
  static Ret callback_fn(intptr_t callable, Params ...params) {
    return (*reinterpret_cast<Callable*>(callable))(
        std::forward<Params>(params)...);
  }

public:
  template <typename Callable>
  function_ref(Callable &&callable,
               typename std::enable_if<
                   !std::is_same<typename std::remove_reference<Callable>::type,
                                 function_ref>::value>::type * = nullptr)
      : callback(callback_fn<typename std::remove_reference<Callable>::type>),
        callable(reinterpret_cast<intptr_t>(&callable)) {}
  Ret operator()(Params ...params) const {
    return callback(callable, std::forward<Params>(params)...);
  }
};

// deleter - Very very very simple method that is used to invoke operator
// delete on something.  It is used like this:
//
//   for_each(V.begin(), B.end(), deleter<Interval>);
//
template <class T>
inline void deleter(T *Ptr) {
  delete Ptr;
}



//===----------------------------------------------------------------------===//
//     Extra additions to <iterator>
//===----------------------------------------------------------------------===//

// mapped_iterator - This is a simple iterator adapter that causes a function to
// be dereferenced whenever operator* is invoked on the iterator.
//
template <class RootIt, class UnaryFunc>
class mapped_iterator {
  RootIt current;
  UnaryFunc Fn;
public:
  typedef typename std::iterator_traits<RootIt>::iterator_category
          iterator_category;
  typedef typename std::iterator_traits<RootIt>::difference_type
          difference_type;
  typedef typename std::result_of<
            UnaryFunc(decltype(*std::declval<RootIt>()))>
          ::type value_type;

  typedef void pointer;
  //typedef typename UnaryFunc::result_type *pointer;
  typedef void reference;        // Can't modify value returned by fn

  typedef RootIt iterator_type;

  inline const RootIt &getCurrent() const { return current; }
  inline const UnaryFunc &getFunc() const { return Fn; }

  inline explicit mapped_iterator(const RootIt &I, UnaryFunc F)
    : current(I), Fn(F) {}

  inline value_type operator*() const {   // All this work to do this
    return Fn(*current);         // little change
  }

  mapped_iterator &operator++() {
    ++current;
    return *this;
  }
  mapped_iterator &operator--() {
    --current;
    return *this;
  }
  mapped_iterator operator++(int) {
    mapped_iterator __tmp = *this;
    ++current;
    return __tmp;
  }
  mapped_iterator operator--(int) {
    mapped_iterator __tmp = *this;
    --current;
    return __tmp;
  }
  mapped_iterator operator+(difference_type n) const {
    return mapped_iterator(current + n, Fn);
  }
  mapped_iterator &operator+=(difference_type n) {
    current += n;
    return *this;
  }
  mapped_iterator operator-(difference_type n) const {
    return mapped_iterator(current - n, Fn);
  }
  mapped_iterator &operator-=(difference_type n) {
    current -= n;
    return *this;
  }
  reference operator[](difference_type n) const { return *(*this + n); }

  bool operator!=(const mapped_iterator &X) const { return !operator==(X); }
  bool operator==(const mapped_iterator &X) const {
    return current == X.current;
  }
  bool operator<(const mapped_iterator &X) const { return current < X.current; }

  difference_type operator-(const mapped_iterator &X) const {
    return current - X.current;
  }
};

template <class Iterator, class Func>
inline mapped_iterator<Iterator, Func>
operator+(typename mapped_iterator<Iterator, Func>::difference_type N,
          const mapped_iterator<Iterator, Func> &X) {
  return mapped_iterator<Iterator, Func>(X.getCurrent() - N, X.getFunc());
}


// map_iterator - Provide a convenient way to create mapped_iterators, just like
// make_pair is useful for creating pairs...
//
template <class ItTy, class FuncTy>
inline mapped_iterator<ItTy, FuncTy> map_iterator(const ItTy &I, FuncTy F) {
  return mapped_iterator<ItTy, FuncTy>(I, F);
}

/// Helper to determine if type T has a member called rbegin().
template <typename Ty> class has_rbegin_impl {
  typedef char yes[1];
  typedef char no[2];

  template <typename Inner>
  static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);

  template <typename>
  static no& test(...);

public:
  static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
};

/// Metafunction to determine if T& or T has a member called rbegin().
template <typename Ty>
struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> {
};

// Returns an iterator_range over the given container which iterates in reverse.
// Note that the container must have rbegin()/rend() methods for this to work.
template <typename ContainerTy>
auto reverse(ContainerTy &&C,
             typename std::enable_if<has_rbegin<ContainerTy>::value>::type * =
                 nullptr) -> decltype(make_range(C.rbegin(), C.rend())) {
  return make_range(C.rbegin(), C.rend());
}

// Returns a std::reverse_iterator wrapped around the given iterator.
template <typename IteratorTy>
std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) {
  return std::reverse_iterator<IteratorTy>(It);
}

// Returns an iterator_range over the given container which iterates in reverse.
// Note that the container must have begin()/end() methods which return
// bidirectional iterators for this to work.
template <typename ContainerTy>
auto reverse(
    ContainerTy &&C,
    typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * = nullptr)
    -> decltype(make_range(llvm::make_reverse_iterator(std::end(C)),
                           llvm::make_reverse_iterator(std::begin(C)))) {
  return make_range(llvm::make_reverse_iterator(std::end(C)),
                    llvm::make_reverse_iterator(std::begin(C)));
}

/// An iterator adaptor that filters the elements of given inner iterators.
///
/// The predicate parameter should be a callable object that accepts the wrapped
/// iterator's reference type and returns a bool. When incrementing or
/// decrementing the iterator, it will call the predicate on each element and
/// skip any where it returns false.
///
/// \code
///   int A[] = { 1, 2, 3, 4 };
///   auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
///   // R contains { 1, 3 }.
/// \endcode
template <typename WrappedIteratorT, typename PredicateT>
class filter_iterator
    : public iterator_adaptor_base<
          filter_iterator<WrappedIteratorT, PredicateT>, WrappedIteratorT,
          typename std::common_type<
              std::forward_iterator_tag,
              typename std::iterator_traits<
                  WrappedIteratorT>::iterator_category>::type> {
  using BaseT = iterator_adaptor_base<
      filter_iterator<WrappedIteratorT, PredicateT>, WrappedIteratorT,
      typename std::common_type<
          std::forward_iterator_tag,
          typename std::iterator_traits<WrappedIteratorT>::iterator_category>::
          type>;

  struct PayloadType {
    WrappedIteratorT End;
    PredicateT Pred;
  };

  Optional<PayloadType> Payload;

  void findNextValid() {
    assert(Payload && "Payload should be engaged when findNextValid is called");
    while (this->I != Payload->End && !Payload->Pred(*this->I))
      BaseT::operator++();
  }

  // Construct the begin iterator. The begin iterator requires to know where end
  // is, so that it can properly stop when it hits end.
  filter_iterator(WrappedIteratorT Begin, WrappedIteratorT End, PredicateT Pred)
      : BaseT(std::move(Begin)),
        Payload(PayloadType{std::move(End), std::move(Pred)}) {
    findNextValid();
  }

  // Construct the end iterator. It's not incrementable, so Payload doesn't
  // have to be engaged.
  filter_iterator(WrappedIteratorT End) : BaseT(End) {}

public:
  using BaseT::operator++;

  filter_iterator &operator++() {
    BaseT::operator++();
    findNextValid();
    return *this;
  }

  template <typename RT, typename PT>
  friend iterator_range<filter_iterator<detail::IterOfRange<RT>, PT>>
  make_filter_range(RT &&, PT);
};

/// Convenience function that takes a range of elements and a predicate,
/// and return a new filter_iterator range.
///
/// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
/// lifetime of that temporary is not kept by the returned range object, and the
/// temporary is going to be dropped on the floor after the make_iterator_range
/// full expression that contains this function call.
template <typename RangeT, typename PredicateT>
iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
make_filter_range(RangeT &&Range, PredicateT Pred) {
  using FilterIteratorT =
      filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
  return make_range(FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
                                    std::end(std::forward<RangeT>(Range)),
                                    std::move(Pred)),
                    FilterIteratorT(std::end(std::forward<RangeT>(Range))));
}

// forward declarations required by zip_shortest/zip_first
template <typename R, typename UnaryPredicate>
bool all_of(R &&range, UnaryPredicate P);

template <size_t... I> struct index_sequence;

template <class... Ts> struct index_sequence_for;

namespace detail {
template <typename... Iters> class zip_first {
public:
  typedef std::input_iterator_tag iterator_category;
  typedef std::tuple<decltype(*std::declval<Iters>())...> value_type;
  std::tuple<Iters...> iterators;

private:
  template <size_t... Ns> value_type deres(index_sequence<Ns...>) {
    return value_type(*std::get<Ns>(iterators)...);
  }

  template <size_t... Ns> decltype(iterators) tup_inc(index_sequence<Ns...>) {
    return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...);
  }

public:
  value_type operator*() { return deres(index_sequence_for<Iters...>{}); }

  void operator++() { iterators = tup_inc(index_sequence_for<Iters...>{}); }

  bool operator!=(const zip_first<Iters...> &other) const {
    return std::get<0>(iterators) != std::get<0>(other.iterators);
  }
  zip_first(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
};

template <typename... Iters> class zip_shortest : public zip_first<Iters...> {
  template <size_t... Ns>
  bool test(const zip_first<Iters...> &other, index_sequence<Ns...>) const {
    return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
                                              std::get<Ns>(other.iterators)...},
                  identity<bool>{});
  }

public:
  bool operator!=(const zip_first<Iters...> &other) const {
    return test(other, index_sequence_for<Iters...>{});
  }
  zip_shortest(Iters &&... ts)
      : zip_first<Iters...>(std::forward<Iters>(ts)...) {}
};

template <template <typename...> class ItType, typename... Args> class zippy {
public:
  typedef ItType<decltype(std::begin(std::declval<Args>()))...> iterator;

private:
  std::tuple<Args...> ts;

  template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) {
    return iterator(std::begin(std::get<Ns>(ts))...);
  }
  template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) {
    return iterator(std::end(std::get<Ns>(ts))...);
  }

public:
  iterator begin() { return begin_impl(index_sequence_for<Args...>{}); }
  iterator end() { return end_impl(index_sequence_for<Args...>{}); }
  zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
};
} // End detail namespace

/// zip iterator for two or more iteratable types.
template <typename T, typename U, typename... Args>
detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
                                                       Args &&... args) {
  return detail::zippy<detail::zip_shortest, T, U, Args...>(
      std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
}

/// zip iterator that, for the sake of efficiency, assumes the first iteratee to
/// be the shortest.
template <typename T, typename U, typename... Args>
detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
                                                          Args &&... args) {
  return detail::zippy<detail::zip_first, T, U, Args...>(
      std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
}

/// Iterator wrapper that concatenates sequences together.
///
/// This can concatenate different iterators, even with different types, into
/// a single iterator provided the value types of all the concatenated
/// iterators expose `reference` and `pointer` types that can be converted to
/// `ValueT &` and `ValueT *` respectively. It doesn't support more
/// interesting/customized pointer or reference types.
///
/// Currently this only supports forward or higher iterator categories as
/// inputs and always exposes a forward iterator interface.
template <typename ValueT, typename... IterTs>
class concat_iterator
    : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
                                  std::forward_iterator_tag, ValueT> {
  typedef typename concat_iterator::iterator_facade_base BaseT;

  /// We store both the current and end iterators for each concatenated
  /// sequence in a tuple of pairs.
  ///
  /// Note that something like iterator_range seems nice at first here, but the
  /// range properties are of little benefit and end up getting in the way
  /// because we need to do mutation on the current iterators.
  std::tuple<std::pair<IterTs, IterTs>...> IterPairs;

  /// Attempts to increment a specific iterator.
  ///
  /// Returns true if it was able to increment the iterator. Returns false if
  /// the iterator is already at the end iterator.
  template <size_t Index> bool incrementHelper() {
    auto &IterPair = std::get<Index>(IterPairs);
    if (IterPair.first == IterPair.second)
      return false;

    ++IterPair.first;
    return true;
  }

  /// Increments the first non-end iterator.
  ///
  /// It is an error to call this with all iterators at the end.
  template <size_t... Ns> void increment(index_sequence<Ns...>) {
    // Build a sequence of functions to increment each iterator if possible.
    bool (concat_iterator::*IncrementHelperFns[])() = {
        &concat_iterator::incrementHelper<Ns>...};

    // Loop over them, and stop as soon as we succeed at incrementing one.
    for (auto &IncrementHelperFn : IncrementHelperFns)
      if ((this->*IncrementHelperFn)())
        return;

    llvm_unreachable("Attempted to increment an end concat iterator!");
  }

  /// Returns null if the specified iterator is at the end. Otherwise,
  /// dereferences the iterator and returns the address of the resulting
  /// reference.
  template <size_t Index> ValueT *getHelper() const {
    auto &IterPair = std::get<Index>(IterPairs);
    if (IterPair.first == IterPair.second)
      return nullptr;

    return &*IterPair.first;
  }

  /// Finds the first non-end iterator, dereferences, and returns the resulting
  /// reference.
  ///
  /// It is an error to call this with all iterators at the end.
  template <size_t... Ns> ValueT &get(index_sequence<Ns...>) const {
    // Build a sequence of functions to get from iterator if possible.
    ValueT *(concat_iterator::*GetHelperFns[])() const = {
        &concat_iterator::getHelper<Ns>...};

    // Loop over them, and return the first result we find.
    for (auto &GetHelperFn : GetHelperFns)
      if (ValueT *P = (this->*GetHelperFn)())
        return *P;

    llvm_unreachable("Attempted to get a pointer from an end concat iterator!");
  }

public:
  /// Constructs an iterator from a squence of ranges.
  ///
  /// We need the full range to know how to switch between each of the
  /// iterators.
  template <typename... RangeTs>
  explicit concat_iterator(RangeTs &&... Ranges)
      : IterPairs({std::begin(Ranges), std::end(Ranges)}...) {}

  using BaseT::operator++;
  concat_iterator &operator++() {
    increment(index_sequence_for<IterTs...>());
    return *this;
  }

  ValueT &operator*() const { return get(index_sequence_for<IterTs...>()); }

  bool operator==(const concat_iterator &RHS) const {
    return IterPairs == RHS.IterPairs;
  }
};

namespace detail {
/// Helper to store a sequence of ranges being concatenated and access them.
///
/// This is designed to facilitate providing actual storage when temporaries
/// are passed into the constructor such that we can use it as part of range
/// based for loops.
template <typename ValueT, typename... RangeTs> class concat_range {
public:
  typedef concat_iterator<ValueT,
                          decltype(std::begin(std::declval<RangeTs &>()))...>
      iterator;

private:
  std::tuple<RangeTs...> Ranges;

  template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) {
    return iterator(std::get<Ns>(Ranges)...);
  }
  template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) {
    return iterator(make_range(std::end(std::get<Ns>(Ranges)),
                               std::end(std::get<Ns>(Ranges)))...);
  }

public:
  iterator begin() { return begin_impl(index_sequence_for<RangeTs...>{}); }
  iterator end() { return end_impl(index_sequence_for<RangeTs...>{}); }
  concat_range(RangeTs &&... Ranges)
      : Ranges(std::forward<RangeTs>(Ranges)...) {}
};
}

/// Concatenated range across two or more ranges.
///
/// The desired value type must be explicitly specified.
template <typename ValueT, typename... RangeTs>
detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
  static_assert(sizeof...(RangeTs) > 1,
                "Need more than one range to concatenate!");
  return detail::concat_range<ValueT, RangeTs...>(
      std::forward<RangeTs>(Ranges)...);
}

//===----------------------------------------------------------------------===//
//     Extra additions to <utility>
//===----------------------------------------------------------------------===//

/// \brief Function object to check whether the first component of a std::pair
/// compares less than the first component of another std::pair.
struct less_first {
  template <typename T> bool operator()(const T &lhs, const T &rhs) const {
    return lhs.first < rhs.first;
  }
};

/// \brief Function object to check whether the second component of a std::pair
/// compares less than the second component of another std::pair.
struct less_second {
  template <typename T> bool operator()(const T &lhs, const T &rhs) const {
    return lhs.second < rhs.second;
  }
};

// A subset of N3658. More stuff can be added as-needed.

/// \brief Represents a compile-time sequence of integers.
template <class T, T... I> struct integer_sequence {
  typedef T value_type;

  static constexpr size_t size() { return sizeof...(I); }
};

/// \brief Alias for the common case of a sequence of size_ts.
template <size_t... I>
struct index_sequence : integer_sequence<std::size_t, I...> {};

template <std::size_t N, std::size_t... I>
struct build_index_impl : build_index_impl<N - 1, N - 1, I...> {};
template <std::size_t... I>
struct build_index_impl<0, I...> : index_sequence<I...> {};

/// \brief Creates a compile-time integer sequence for a parameter pack.
template <class... Ts>
struct index_sequence_for : build_index_impl<sizeof...(Ts)> {};

/// Utility type to build an inheritance chain that makes it easy to rank
/// overload candidates.
template <int N> struct rank : rank<N - 1> {};
template <> struct rank<0> {};

/// \brief traits class for checking whether type T is one of any of the given
/// types in the variadic list.
template <typename T, typename... Ts> struct is_one_of {
  static const bool value = false;
};

template <typename T, typename U, typename... Ts>
struct is_one_of<T, U, Ts...> {
  static const bool value =
      std::is_same<T, U>::value || is_one_of<T, Ts...>::value;
};

//===----------------------------------------------------------------------===//
//     Extra additions for arrays
//===----------------------------------------------------------------------===//

/// Find the length of an array.
template <class T, std::size_t N>
constexpr inline size_t array_lengthof(T (&)[N]) {
  return N;
}

/// Adapt std::less<T> for array_pod_sort.
template<typename T>
inline int array_pod_sort_comparator(const void *P1, const void *P2) {
  if (std::less<T>()(*reinterpret_cast<const T*>(P1),
                     *reinterpret_cast<const T*>(P2)))
    return -1;
  if (std::less<T>()(*reinterpret_cast<const T*>(P2),
                     *reinterpret_cast<const T*>(P1)))
    return 1;
  return 0;
}

/// get_array_pod_sort_comparator - This is an internal helper function used to
/// get type deduction of T right.
template<typename T>
inline int (*get_array_pod_sort_comparator(const T &))
             (const void*, const void*) {
  return array_pod_sort_comparator<T>;
}


/// array_pod_sort - This sorts an array with the specified start and end
/// extent.  This is just like std::sort, except that it calls qsort instead of
/// using an inlined template.  qsort is slightly slower than std::sort, but
/// most sorts are not performance critical in LLVM and std::sort has to be
/// template instantiated for each type, leading to significant measured code
/// bloat.  This function should generally be used instead of std::sort where
/// possible.
///
/// This function assumes that you have simple POD-like types that can be
/// compared with std::less and can be moved with memcpy.  If this isn't true,
/// you should use std::sort.
///
/// NOTE: If qsort_r were portable, we could allow a custom comparator and
/// default to std::less.
template<class IteratorTy>
inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
  // Don't inefficiently call qsort with one element or trigger undefined
  // behavior with an empty sequence.
  auto NElts = End - Start;
  if (NElts <= 1) return;
  qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
}

template <class IteratorTy>
inline void array_pod_sort(
    IteratorTy Start, IteratorTy End,
    int (*Compare)(
        const typename std::iterator_traits<IteratorTy>::value_type *,
        const typename std::iterator_traits<IteratorTy>::value_type *)) {
  // Don't inefficiently call qsort with one element or trigger undefined
  // behavior with an empty sequence.
  auto NElts = End - Start;
  if (NElts <= 1) return;
  qsort(&*Start, NElts, sizeof(*Start),
        reinterpret_cast<int (*)(const void *, const void *)>(Compare));
}

//===----------------------------------------------------------------------===//
//     Extra additions to <algorithm>
//===----------------------------------------------------------------------===//

/// For a container of pointers, deletes the pointers and then clears the
/// container.
template<typename Container>
void DeleteContainerPointers(Container &C) {
  for (auto V : C)
    delete V;
  C.clear();
}

/// In a container of pairs (usually a map) whose second element is a pointer,
/// deletes the second elements and then clears the container.
template<typename Container>
void DeleteContainerSeconds(Container &C) {
  for (auto &V : C)
    delete V.second;
  C.clear();
}

/// Provide wrappers to std::all_of which take ranges instead of having to pass
/// begin/end explicitly.
template <typename R, typename UnaryPredicate>
bool all_of(R &&Range, UnaryPredicate P) {
  return std::all_of(std::begin(Range), std::end(Range), P);
}

/// Provide wrappers to std::any_of which take ranges instead of having to pass
/// begin/end explicitly.
template <typename R, typename UnaryPredicate>
bool any_of(R &&Range, UnaryPredicate P) {
  return std::any_of(std::begin(Range), std::end(Range), P);
}

/// Provide wrappers to std::none_of which take ranges instead of having to pass
/// begin/end explicitly.
template <typename R, typename UnaryPredicate>
bool none_of(R &&Range, UnaryPredicate P) {
  return std::none_of(std::begin(Range), std::end(Range), P);
}

/// Provide wrappers to std::find which take ranges instead of having to pass
/// begin/end explicitly.
template <typename R, typename T>
auto find(R &&Range, const T &Val) -> decltype(std::begin(Range)) {
  return std::find(std::begin(Range), std::end(Range), Val);
}

/// Provide wrappers to std::find_if which take ranges instead of having to pass
/// begin/end explicitly.
template <typename R, typename UnaryPredicate>
auto find_if(R &&Range, UnaryPredicate P) -> decltype(std::begin(Range)) {
  return std::find_if(std::begin(Range), std::end(Range), P);
}

template <typename R, typename UnaryPredicate>
auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(std::begin(Range)) {
  return std::find_if_not(std::begin(Range), std::end(Range), P);
}

/// Provide wrappers to std::remove_if which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename UnaryPredicate>
auto remove_if(R &&Range, UnaryPredicate P) -> decltype(std::begin(Range)) {
  return std::remove_if(std::begin(Range), std::end(Range), P);
}

/// Wrapper function around std::find to detect if an element exists
/// in a container.
template <typename R, typename E>
bool is_contained(R &&Range, const E &Element) {
  return std::find(std::begin(Range), std::end(Range), Element) !=
         std::end(Range);
}

/// Wrapper function around std::count to count the number of times an element
/// \p Element occurs in the given range \p Range.
template <typename R, typename E>
auto count(R &&Range, const E &Element) -> typename std::iterator_traits<
    decltype(std::begin(Range))>::difference_type {
  return std::count(std::begin(Range), std::end(Range), Element);
}

/// Wrapper function around std::count_if to count the number of times an
/// element satisfying a given predicate occurs in a range.
template <typename R, typename UnaryPredicate>
auto count_if(R &&Range, UnaryPredicate P) -> typename std::iterator_traits<
    decltype(std::begin(Range))>::difference_type {
  return std::count_if(std::begin(Range), std::end(Range), P);
}

/// Wrapper function around std::transform to apply a function to a range and
/// store the result elsewhere.
template <typename R, typename OutputIt, typename UnaryPredicate>
OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate P) {
  return std::transform(std::begin(Range), std::end(Range), d_first, P);
}

/// Provide wrappers to std::partition which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename UnaryPredicate>
auto partition(R &&Range, UnaryPredicate P) -> decltype(std::begin(Range)) {
  return std::partition(std::begin(Range), std::end(Range), P);
}

/// Provide a container algorithm similar to C++ Library Fundamentals v2's
/// `erase_if` which is equivalent to:
///
///   C.erase(remove_if(C, pred), C.end());
///
/// This version works for any container with an erase method call accepting
/// two iterators.
template <typename Container, typename UnaryPredicate>
void erase_if(Container &C, UnaryPredicate P) {
  C.erase(remove_if(C, P), C.end());
}

//===----------------------------------------------------------------------===//
//     Extra additions to <memory>
//===----------------------------------------------------------------------===//

// Implement make_unique according to N3656.

/// \brief Constructs a `new T()` with the given args and returns a
///        `unique_ptr<T>` which owns the object.
///
/// Example:
///
///     auto p = make_unique<int>();
///     auto p = make_unique<std::tuple<int, int>>(0, 1);
template <class T, class... Args>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Args &&... args) {
  return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
}

/// \brief Constructs a `new T[n]` with the given args and returns a
///        `unique_ptr<T[]>` which owns the object.
///
/// \param n size of the new array.
///
/// Example:
///
///     auto p = make_unique<int[]>(2); // value-initializes the array with 0's.
template <class T>
typename std::enable_if<std::is_array<T>::value && std::extent<T>::value == 0,
                        std::unique_ptr<T>>::type
make_unique(size_t n) {
  return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]());
}

/// This function isn't used and is only here to provide better compile errors.
template <class T, class... Args>
typename std::enable_if<std::extent<T>::value != 0>::type
make_unique(Args &&...) = delete;

struct FreeDeleter {
  void operator()(void* v) {
    ::free(v);
  }
};

template<typename First, typename Second>
struct pair_hash {
  size_t operator()(const std::pair<First, Second> &P) const {
    return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
  }
};

/// A functor like C++14's std::less<void> in its absence.
struct less {
  template <typename A, typename B> bool operator()(A &&a, B &&b) const {
    return std::forward<A>(a) < std::forward<B>(b);
  }
};

/// A functor like C++14's std::equal<void> in its absence.
struct equal {
  template <typename A, typename B> bool operator()(A &&a, B &&b) const {
    return std::forward<A>(a) == std::forward<B>(b);
  }
};

/// Binary functor that adapts to any other binary functor after dereferencing
/// operands.
template <typename T> struct deref {
  T func;
  // Could be further improved to cope with non-derivable functors and
  // non-binary functors (should be a variadic template member function
  // operator()).
  template <typename A, typename B>
  auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs)) {
    assert(lhs);
    assert(rhs);
    return func(*lhs, *rhs);
  }
};

namespace detail {
template <typename R> class enumerator_impl {
public:
  template <typename X> struct result_pair {
    result_pair(std::size_t Index, X Value) : Index(Index), Value(Value) {}

    const std::size_t Index;
    X Value;
  };

  class iterator {
    typedef
        typename std::iterator_traits<IterOfRange<R>>::reference iter_reference;
    typedef result_pair<iter_reference> result_type;

  public:
    iterator(IterOfRange<R> &&Iter, std::size_t Index)
        : Iter(Iter), Index(Index) {}

    result_type operator*() const { return result_type(Index, *Iter); }

    iterator &operator++() {
      ++Iter;
      ++Index;
      return *this;
    }

    bool operator!=(const iterator &RHS) const { return Iter != RHS.Iter; }

  private:
    IterOfRange<R> Iter;
    std::size_t Index;
  };

public:
  explicit enumerator_impl(R &&Range) : Range(std::forward<R>(Range)) {}

  iterator begin() { return iterator(std::begin(Range), 0); }
  iterator end() { return iterator(std::end(Range), std::size_t(-1)); }

private:
  R Range;
};
}

/// Given an input range, returns a new range whose values are are pair (A,B)
/// such that A is the 0-based index of the item in the sequence, and B is
/// the value from the original sequence.  Example:
///
/// std::vector<char> Items = {'A', 'B', 'C', 'D'};
/// for (auto X : enumerate(Items)) {
///   printf("Item %d - %c\n", X.Index, X.Value);
/// }
///
/// Output:
///   Item 0 - A
///   Item 1 - B
///   Item 2 - C
///   Item 3 - D
///
template <typename R> detail::enumerator_impl<R> enumerate(R &&Range) {
  return detail::enumerator_impl<R>(std::forward<R>(Range));
}

namespace detail {
template <typename F, typename Tuple, std::size_t... I>
auto apply_tuple_impl(F &&f, Tuple &&t, index_sequence<I...>)
    -> decltype(std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...)) {
  return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
}
}

/// Given an input tuple (a1, a2, ..., an), pass the arguments of the
/// tuple variadically to f as if by calling f(a1, a2, ..., an) and
/// return the result.
template <typename F, typename Tuple>
auto apply_tuple(F &&f, Tuple &&t) -> decltype(detail::apply_tuple_impl(
    std::forward<F>(f), std::forward<Tuple>(t),
    build_index_impl<
        std::tuple_size<typename std::decay<Tuple>::type>::value>{})) {
  using Indices = build_index_impl<
      std::tuple_size<typename std::decay<Tuple>::type>::value>;

  return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t),
                                  Indices{});
}
} // End llvm namespace

#endif