/usr/include/llvm-4.0/llvm/ADT/SparseMultiSet.h is in llvm-4.0-dev 1:4.0.1-10.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 | //===--- llvm/ADT/SparseMultiSet.h - Sparse multiset ------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the SparseMultiSet class, which adds multiset behavior to
// the SparseSet.
//
// A sparse multiset holds a small number of objects identified by integer keys
// from a moderately sized universe. The sparse multiset uses more memory than
// other containers in order to provide faster operations. Any key can map to
// multiple values. A SparseMultiSetNode class is provided, which serves as a
// convenient base class for the contents of a SparseMultiSet.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_SPARSEMULTISET_H
#define LLVM_ADT_SPARSEMULTISET_H
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SparseSet.h"
#include "llvm/ADT/STLExtras.h"
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <iterator>
#include <limits>
#include <utility>
namespace llvm {
/// Fast multiset implementation for objects that can be identified by small
/// unsigned keys.
///
/// SparseMultiSet allocates memory proportional to the size of the key
/// universe, so it is not recommended for building composite data structures.
/// It is useful for algorithms that require a single set with fast operations.
///
/// Compared to DenseSet and DenseMap, SparseMultiSet provides constant-time
/// fast clear() as fast as a vector. The find(), insert(), and erase()
/// operations are all constant time, and typically faster than a hash table.
/// The iteration order doesn't depend on numerical key values, it only depends
/// on the order of insert() and erase() operations. Iteration order is the
/// insertion order. Iteration is only provided over elements of equivalent
/// keys, but iterators are bidirectional.
///
/// Compared to BitVector, SparseMultiSet<unsigned> uses 8x-40x more memory, but
/// offers constant-time clear() and size() operations as well as fast iteration
/// independent on the size of the universe.
///
/// SparseMultiSet contains a dense vector holding all the objects and a sparse
/// array holding indexes into the dense vector. Most of the memory is used by
/// the sparse array which is the size of the key universe. The SparseT template
/// parameter provides a space/speed tradeoff for sets holding many elements.
///
/// When SparseT is uint32_t, find() only touches up to 3 cache lines, but the
/// sparse array uses 4 x Universe bytes.
///
/// When SparseT is uint8_t (the default), find() touches up to 3+[N/256] cache
/// lines, but the sparse array is 4x smaller. N is the number of elements in
/// the set.
///
/// For sets that may grow to thousands of elements, SparseT should be set to
/// uint16_t or uint32_t.
///
/// Multiset behavior is provided by providing doubly linked lists for values
/// that are inlined in the dense vector. SparseMultiSet is a good choice when
/// one desires a growable number of entries per key, as it will retain the
/// SparseSet algorithmic properties despite being growable. Thus, it is often a
/// better choice than a SparseSet of growable containers or a vector of
/// vectors. SparseMultiSet also keeps iterators valid after erasure (provided
/// the iterators don't point to the element erased), allowing for more
/// intuitive and fast removal.
///
/// @tparam ValueT The type of objects in the set.
/// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT.
/// @tparam SparseT An unsigned integer type. See above.
///
template<typename ValueT,
typename KeyFunctorT = identity<unsigned>,
typename SparseT = uint8_t>
class SparseMultiSet {
static_assert(std::numeric_limits<SparseT>::is_integer &&
!std::numeric_limits<SparseT>::is_signed,
"SparseT must be an unsigned integer type");
/// The actual data that's stored, as a doubly-linked list implemented via
/// indices into the DenseVector. The doubly linked list is implemented
/// circular in Prev indices, and INVALID-terminated in Next indices. This
/// provides efficient access to list tails. These nodes can also be
/// tombstones, in which case they are actually nodes in a single-linked
/// freelist of recyclable slots.
struct SMSNode {
static const unsigned INVALID = ~0U;
ValueT Data;
unsigned Prev;
unsigned Next;
SMSNode(ValueT D, unsigned P, unsigned N) : Data(D), Prev(P), Next(N) { }
/// List tails have invalid Nexts.
bool isTail() const {
return Next == INVALID;
}
/// Whether this node is a tombstone node, and thus is in our freelist.
bool isTombstone() const {
return Prev == INVALID;
}
/// Since the list is circular in Prev, all non-tombstone nodes have a valid
/// Prev.
bool isValid() const { return Prev != INVALID; }
};
typedef typename KeyFunctorT::argument_type KeyT;
typedef SmallVector<SMSNode, 8> DenseT;
DenseT Dense;
SparseT *Sparse = nullptr;
unsigned Universe = 0;
KeyFunctorT KeyIndexOf;
SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf;
/// We have a built-in recycler for reusing tombstone slots. This recycler
/// puts a singly-linked free list into tombstone slots, allowing us quick
/// erasure, iterator preservation, and dense size.
unsigned FreelistIdx = SMSNode::INVALID;
unsigned NumFree = 0;
unsigned sparseIndex(const ValueT &Val) const {
assert(ValIndexOf(Val) < Universe &&
"Invalid key in set. Did object mutate?");
return ValIndexOf(Val);
}
unsigned sparseIndex(const SMSNode &N) const { return sparseIndex(N.Data); }
/// Whether the given entry is the head of the list. List heads's previous
/// pointers are to the tail of the list, allowing for efficient access to the
/// list tail. D must be a valid entry node.
bool isHead(const SMSNode &D) const {
assert(D.isValid() && "Invalid node for head");
return Dense[D.Prev].isTail();
}
/// Whether the given entry is a singleton entry, i.e. the only entry with
/// that key.
bool isSingleton(const SMSNode &N) const {
assert(N.isValid() && "Invalid node for singleton");
// Is N its own predecessor?
return &Dense[N.Prev] == &N;
}
/// Add in the given SMSNode. Uses a free entry in our freelist if
/// available. Returns the index of the added node.
unsigned addValue(const ValueT& V, unsigned Prev, unsigned Next) {
if (NumFree == 0) {
Dense.push_back(SMSNode(V, Prev, Next));
return Dense.size() - 1;
}
// Peel off a free slot
unsigned Idx = FreelistIdx;
unsigned NextFree = Dense[Idx].Next;
assert(Dense[Idx].isTombstone() && "Non-tombstone free?");
Dense[Idx] = SMSNode(V, Prev, Next);
FreelistIdx = NextFree;
--NumFree;
return Idx;
}
/// Make the current index a new tombstone. Pushes it onto the freelist.
void makeTombstone(unsigned Idx) {
Dense[Idx].Prev = SMSNode::INVALID;
Dense[Idx].Next = FreelistIdx;
FreelistIdx = Idx;
++NumFree;
}
public:
typedef ValueT value_type;
typedef ValueT &reference;
typedef const ValueT &const_reference;
typedef ValueT *pointer;
typedef const ValueT *const_pointer;
typedef unsigned size_type;
SparseMultiSet() = default;
SparseMultiSet(const SparseMultiSet &) = delete;
SparseMultiSet &operator=(const SparseMultiSet &) = delete;
~SparseMultiSet() { free(Sparse); }
/// Set the universe size which determines the largest key the set can hold.
/// The universe must be sized before any elements can be added.
///
/// @param U Universe size. All object keys must be less than U.
///
void setUniverse(unsigned U) {
// It's not hard to resize the universe on a non-empty set, but it doesn't
// seem like a likely use case, so we can add that code when we need it.
assert(empty() && "Can only resize universe on an empty map");
// Hysteresis prevents needless reallocations.
if (U >= Universe/4 && U <= Universe)
return;
free(Sparse);
// The Sparse array doesn't actually need to be initialized, so malloc
// would be enough here, but that will cause tools like valgrind to
// complain about branching on uninitialized data.
Sparse = reinterpret_cast<SparseT*>(calloc(U, sizeof(SparseT)));
Universe = U;
}
/// Our iterators are iterators over the collection of objects that share a
/// key.
template<typename SMSPtrTy>
class iterator_base : public std::iterator<std::bidirectional_iterator_tag,
ValueT> {
friend class SparseMultiSet;
SMSPtrTy SMS;
unsigned Idx;
unsigned SparseIdx;
iterator_base(SMSPtrTy P, unsigned I, unsigned SI)
: SMS(P), Idx(I), SparseIdx(SI) { }
/// Whether our iterator has fallen outside our dense vector.
bool isEnd() const {
if (Idx == SMSNode::INVALID)
return true;
assert(Idx < SMS->Dense.size() && "Out of range, non-INVALID Idx?");
return false;
}
/// Whether our iterator is properly keyed, i.e. the SparseIdx is valid
bool isKeyed() const { return SparseIdx < SMS->Universe; }
unsigned Prev() const { return SMS->Dense[Idx].Prev; }
unsigned Next() const { return SMS->Dense[Idx].Next; }
void setPrev(unsigned P) { SMS->Dense[Idx].Prev = P; }
void setNext(unsigned N) { SMS->Dense[Idx].Next = N; }
public:
typedef std::iterator<std::bidirectional_iterator_tag, ValueT> super;
typedef typename super::value_type value_type;
typedef typename super::difference_type difference_type;
typedef typename super::pointer pointer;
typedef typename super::reference reference;
reference operator*() const {
assert(isKeyed() && SMS->sparseIndex(SMS->Dense[Idx].Data) == SparseIdx &&
"Dereferencing iterator of invalid key or index");
return SMS->Dense[Idx].Data;
}
pointer operator->() const { return &operator*(); }
/// Comparison operators
bool operator==(const iterator_base &RHS) const {
// end compares equal
if (SMS == RHS.SMS && Idx == RHS.Idx) {
assert((isEnd() || SparseIdx == RHS.SparseIdx) &&
"Same dense entry, but different keys?");
return true;
}
return false;
}
bool operator!=(const iterator_base &RHS) const {
return !operator==(RHS);
}
/// Increment and decrement operators
iterator_base &operator--() { // predecrement - Back up
assert(isKeyed() && "Decrementing an invalid iterator");
assert((isEnd() || !SMS->isHead(SMS->Dense[Idx])) &&
"Decrementing head of list");
// If we're at the end, then issue a new find()
if (isEnd())
Idx = SMS->findIndex(SparseIdx).Prev();
else
Idx = Prev();
return *this;
}
iterator_base &operator++() { // preincrement - Advance
assert(!isEnd() && isKeyed() && "Incrementing an invalid/end iterator");
Idx = Next();
return *this;
}
iterator_base operator--(int) { // postdecrement
iterator_base I(*this);
--*this;
return I;
}
iterator_base operator++(int) { // postincrement
iterator_base I(*this);
++*this;
return I;
}
};
typedef iterator_base<SparseMultiSet *> iterator;
typedef iterator_base<const SparseMultiSet *> const_iterator;
// Convenience types
typedef std::pair<iterator, iterator> RangePair;
/// Returns an iterator past this container. Note that such an iterator cannot
/// be decremented, but will compare equal to other end iterators.
iterator end() { return iterator(this, SMSNode::INVALID, SMSNode::INVALID); }
const_iterator end() const {
return const_iterator(this, SMSNode::INVALID, SMSNode::INVALID);
}
/// Returns true if the set is empty.
///
/// This is not the same as BitVector::empty().
///
bool empty() const { return size() == 0; }
/// Returns the number of elements in the set.
///
/// This is not the same as BitVector::size() which returns the size of the
/// universe.
///
size_type size() const {
assert(NumFree <= Dense.size() && "Out-of-bounds free entries");
return Dense.size() - NumFree;
}
/// Clears the set. This is a very fast constant time operation.
///
void clear() {
// Sparse does not need to be cleared, see find().
Dense.clear();
NumFree = 0;
FreelistIdx = SMSNode::INVALID;
}
/// Find an element by its index.
///
/// @param Idx A valid index to find.
/// @returns An iterator to the element identified by key, or end().
///
iterator findIndex(unsigned Idx) {
assert(Idx < Universe && "Key out of range");
const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u;
for (unsigned i = Sparse[Idx], e = Dense.size(); i < e; i += Stride) {
const unsigned FoundIdx = sparseIndex(Dense[i]);
// Check that we're pointing at the correct entry and that it is the head
// of a valid list.
if (Idx == FoundIdx && Dense[i].isValid() && isHead(Dense[i]))
return iterator(this, i, Idx);
// Stride is 0 when SparseT >= unsigned. We don't need to loop.
if (!Stride)
break;
}
return end();
}
/// Find an element by its key.
///
/// @param Key A valid key to find.
/// @returns An iterator to the element identified by key, or end().
///
iterator find(const KeyT &Key) {
return findIndex(KeyIndexOf(Key));
}
const_iterator find(const KeyT &Key) const {
iterator I = const_cast<SparseMultiSet*>(this)->findIndex(KeyIndexOf(Key));
return const_iterator(I.SMS, I.Idx, KeyIndexOf(Key));
}
/// Returns the number of elements identified by Key. This will be linear in
/// the number of elements of that key.
size_type count(const KeyT &Key) const {
unsigned Ret = 0;
for (const_iterator It = find(Key); It != end(); ++It)
++Ret;
return Ret;
}
/// Returns true if this set contains an element identified by Key.
bool contains(const KeyT &Key) const {
return find(Key) != end();
}
/// Return the head and tail of the subset's list, otherwise returns end().
iterator getHead(const KeyT &Key) { return find(Key); }
iterator getTail(const KeyT &Key) {
iterator I = find(Key);
if (I != end())
I = iterator(this, I.Prev(), KeyIndexOf(Key));
return I;
}
/// The bounds of the range of items sharing Key K. First member is the head
/// of the list, and the second member is a decrementable end iterator for
/// that key.
RangePair equal_range(const KeyT &K) {
iterator B = find(K);
iterator E = iterator(this, SMSNode::INVALID, B.SparseIdx);
return make_pair(B, E);
}
/// Insert a new element at the tail of the subset list. Returns an iterator
/// to the newly added entry.
iterator insert(const ValueT &Val) {
unsigned Idx = sparseIndex(Val);
iterator I = findIndex(Idx);
unsigned NodeIdx = addValue(Val, SMSNode::INVALID, SMSNode::INVALID);
if (I == end()) {
// Make a singleton list
Sparse[Idx] = NodeIdx;
Dense[NodeIdx].Prev = NodeIdx;
return iterator(this, NodeIdx, Idx);
}
// Stick it at the end.
unsigned HeadIdx = I.Idx;
unsigned TailIdx = I.Prev();
Dense[TailIdx].Next = NodeIdx;
Dense[HeadIdx].Prev = NodeIdx;
Dense[NodeIdx].Prev = TailIdx;
return iterator(this, NodeIdx, Idx);
}
/// Erases an existing element identified by a valid iterator.
///
/// This invalidates iterators pointing at the same entry, but erase() returns
/// an iterator pointing to the next element in the subset's list. This makes
/// it possible to erase selected elements while iterating over the subset:
///
/// tie(I, E) = Set.equal_range(Key);
/// while (I != E)
/// if (test(*I))
/// I = Set.erase(I);
/// else
/// ++I;
///
/// Note that if the last element in the subset list is erased, this will
/// return an end iterator which can be decremented to get the new tail (if it
/// exists):
///
/// tie(B, I) = Set.equal_range(Key);
/// for (bool isBegin = B == I; !isBegin; /* empty */) {
/// isBegin = (--I) == B;
/// if (test(I))
/// break;
/// I = erase(I);
/// }
iterator erase(iterator I) {
assert(I.isKeyed() && !I.isEnd() && !Dense[I.Idx].isTombstone() &&
"erasing invalid/end/tombstone iterator");
// First, unlink the node from its list. Then swap the node out with the
// dense vector's last entry
iterator NextI = unlink(Dense[I.Idx]);
// Put in a tombstone.
makeTombstone(I.Idx);
return NextI;
}
/// Erase all elements with the given key. This invalidates all
/// iterators of that key.
void eraseAll(const KeyT &K) {
for (iterator I = find(K); I != end(); /* empty */)
I = erase(I);
}
private:
/// Unlink the node from its list. Returns the next node in the list.
iterator unlink(const SMSNode &N) {
if (isSingleton(N)) {
// Singleton is already unlinked
assert(N.Next == SMSNode::INVALID && "Singleton has next?");
return iterator(this, SMSNode::INVALID, ValIndexOf(N.Data));
}
if (isHead(N)) {
// If we're the head, then update the sparse array and our next.
Sparse[sparseIndex(N)] = N.Next;
Dense[N.Next].Prev = N.Prev;
return iterator(this, N.Next, ValIndexOf(N.Data));
}
if (N.isTail()) {
// If we're the tail, then update our head and our previous.
findIndex(sparseIndex(N)).setPrev(N.Prev);
Dense[N.Prev].Next = N.Next;
// Give back an end iterator that can be decremented
iterator I(this, N.Prev, ValIndexOf(N.Data));
return ++I;
}
// Otherwise, just drop us
Dense[N.Next].Prev = N.Prev;
Dense[N.Prev].Next = N.Next;
return iterator(this, N.Next, ValIndexOf(N.Data));
}
};
} // end namespace llvm
#endif // LLVM_ADT_SPARSEMULTISET_H
|