This file is indexed.

/usr/include/llvm-4.0/llvm/CodeGen/MachineFunction.h is in llvm-4.0-dev 1:4.0.1-10.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
//===-- llvm/CodeGen/MachineFunction.h --------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Collect native machine code for a function.  This class contains a list of
// MachineBasicBlock instances that make up the current compiled function.
//
// This class also contains pointers to various classes which hold
// target-specific information about the generated code.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CODEGEN_MACHINEFUNCTION_H
#define LLVM_CODEGEN_MACHINEFUNCTION_H

#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/ilist.h"
#include "llvm/ADT/Optional.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Metadata.h"
#include "llvm/MC/MCDwarf.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/ArrayRecycler.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Recycler.h"

namespace llvm {

class Value;
class Function;
class GCModuleInfo;
class MachineRegisterInfo;
class MachineFrameInfo;
class MachineConstantPool;
class MachineJumpTableInfo;
class MachineModuleInfo;
class MCContext;
class Pass;
class PseudoSourceValueManager;
class TargetMachine;
class TargetSubtargetInfo;
class TargetRegisterClass;
struct MachinePointerInfo;
struct WinEHFuncInfo;

template <> struct ilist_alloc_traits<MachineBasicBlock> {
  void deleteNode(MachineBasicBlock *MBB);
};

template <> struct ilist_callback_traits<MachineBasicBlock> {
  void addNodeToList(MachineBasicBlock* MBB);
  void removeNodeFromList(MachineBasicBlock* MBB);

  template <class Iterator>
  void transferNodesFromList(ilist_callback_traits &OldList, Iterator, Iterator) {
    llvm_unreachable("Never transfer between lists");
  }
};

/// MachineFunctionInfo - This class can be derived from and used by targets to
/// hold private target-specific information for each MachineFunction.  Objects
/// of type are accessed/created with MF::getInfo and destroyed when the
/// MachineFunction is destroyed.
struct MachineFunctionInfo {
  virtual ~MachineFunctionInfo();

  /// \brief Factory function: default behavior is to call new using the
  /// supplied allocator.
  ///
  /// This function can be overridden in a derive class.
  template<typename Ty>
  static Ty *create(BumpPtrAllocator &Allocator, MachineFunction &MF) {
    return new (Allocator.Allocate<Ty>()) Ty(MF);
  }
};

/// Properties which a MachineFunction may have at a given point in time.
/// Each of these has checking code in the MachineVerifier, and passes can
/// require that a property be set.
class MachineFunctionProperties {
  // Possible TODO: Allow targets to extend this (perhaps by allowing the
  // constructor to specify the size of the bit vector)
  // Possible TODO: Allow requiring the negative (e.g. VRegsAllocated could be
  // stated as the negative of "has vregs"

public:
  // The properties are stated in "positive" form; i.e. a pass could require
  // that the property hold, but not that it does not hold.

  // Property descriptions:
  // IsSSA: True when the machine function is in SSA form and virtual registers
  //  have a single def.
  // NoPHIs: The machine function does not contain any PHI instruction.
  // TracksLiveness: True when tracking register liveness accurately.
  //  While this property is set, register liveness information in basic block
  //  live-in lists and machine instruction operands (e.g. kill flags, implicit
  //  defs) is accurate. This means it can be used to change the code in ways
  //  that affect the values in registers, for example by the register
  //  scavenger.
  //  When this property is clear, liveness is no longer reliable.
  // NoVRegs: The machine function does not use any virtual registers.
  // Legalized: In GlobalISel: the MachineLegalizer ran and all pre-isel generic
  //  instructions have been legalized; i.e., all instructions are now one of:
  //   - generic and always legal (e.g., COPY)
  //   - target-specific
  //   - legal pre-isel generic instructions.
  // RegBankSelected: In GlobalISel: the RegBankSelect pass ran and all generic
  //  virtual registers have been assigned to a register bank.
  // Selected: In GlobalISel: the InstructionSelect pass ran and all pre-isel
  //  generic instructions have been eliminated; i.e., all instructions are now
  //  target-specific or non-pre-isel generic instructions (e.g., COPY).
  //  Since only pre-isel generic instructions can have generic virtual register
  //  operands, this also means that all generic virtual registers have been
  //  constrained to virtual registers (assigned to register classes) and that
  //  all sizes attached to them have been eliminated.
  enum class Property : unsigned {
    IsSSA,
    NoPHIs,
    TracksLiveness,
    NoVRegs,
    FailedISel,
    Legalized,
    RegBankSelected,
    Selected,
    LastProperty = Selected,
  };

  bool hasProperty(Property P) const {
    return Properties[static_cast<unsigned>(P)];
  }
  MachineFunctionProperties &set(Property P) {
    Properties.set(static_cast<unsigned>(P));
    return *this;
  }
  MachineFunctionProperties &reset(Property P) {
    Properties.reset(static_cast<unsigned>(P));
    return *this;
  }
  /// Reset all the properties.
  MachineFunctionProperties &reset() {
    Properties.reset();
    return *this;
  }
  MachineFunctionProperties &set(const MachineFunctionProperties &MFP) {
    Properties |= MFP.Properties;
    return *this;
  }
  MachineFunctionProperties &reset(const MachineFunctionProperties &MFP) {
    Properties.reset(MFP.Properties);
    return *this;
  }
  // Returns true if all properties set in V (i.e. required by a pass) are set
  // in this.
  bool verifyRequiredProperties(const MachineFunctionProperties &V) const {
    return !V.Properties.test(Properties);
  }

  /// Print the MachineFunctionProperties in human-readable form.
  void print(raw_ostream &OS) const;

private:
  BitVector Properties =
      BitVector(static_cast<unsigned>(Property::LastProperty)+1);
};

struct SEHHandler {
  /// Filter or finally function. Null indicates a catch-all.
  const Function *FilterOrFinally;

  /// Address of block to recover at. Null for a finally handler.
  const BlockAddress *RecoverBA;
};


/// This structure is used to retain landing pad info for the current function.
struct LandingPadInfo {
  MachineBasicBlock *LandingPadBlock;      // Landing pad block.
  SmallVector<MCSymbol *, 1> BeginLabels;  // Labels prior to invoke.
  SmallVector<MCSymbol *, 1> EndLabels;    // Labels after invoke.
  SmallVector<SEHHandler, 1> SEHHandlers;  // SEH handlers active at this lpad.
  MCSymbol *LandingPadLabel;               // Label at beginning of landing pad.
  std::vector<int> TypeIds;               // List of type ids (filters negative).

  explicit LandingPadInfo(MachineBasicBlock *MBB)
      : LandingPadBlock(MBB), LandingPadLabel(nullptr) {}
};

class MachineFunction {
  const Function *Fn;
  const TargetMachine &Target;
  const TargetSubtargetInfo *STI;
  MCContext &Ctx;
  MachineModuleInfo &MMI;

  // RegInfo - Information about each register in use in the function.
  MachineRegisterInfo *RegInfo;

  // Used to keep track of target-specific per-machine function information for
  // the target implementation.
  MachineFunctionInfo *MFInfo;

  // Keep track of objects allocated on the stack.
  MachineFrameInfo *FrameInfo;

  // Keep track of constants which are spilled to memory
  MachineConstantPool *ConstantPool;

  // Keep track of jump tables for switch instructions
  MachineJumpTableInfo *JumpTableInfo;

  // Keeps track of Windows exception handling related data. This will be null
  // for functions that aren't using a funclet-based EH personality.
  WinEHFuncInfo *WinEHInfo = nullptr;

  // Function-level unique numbering for MachineBasicBlocks.  When a
  // MachineBasicBlock is inserted into a MachineFunction is it automatically
  // numbered and this vector keeps track of the mapping from ID's to MBB's.
  std::vector<MachineBasicBlock*> MBBNumbering;

  // Pool-allocate MachineFunction-lifetime and IR objects.
  BumpPtrAllocator Allocator;

  // Allocation management for instructions in function.
  Recycler<MachineInstr> InstructionRecycler;

  // Allocation management for operand arrays on instructions.
  ArrayRecycler<MachineOperand> OperandRecycler;

  // Allocation management for basic blocks in function.
  Recycler<MachineBasicBlock> BasicBlockRecycler;

  // List of machine basic blocks in function
  typedef ilist<MachineBasicBlock> BasicBlockListType;
  BasicBlockListType BasicBlocks;

  /// FunctionNumber - This provides a unique ID for each function emitted in
  /// this translation unit.
  ///
  unsigned FunctionNumber;

  /// Alignment - The alignment of the function.
  unsigned Alignment;

  /// ExposesReturnsTwice - True if the function calls setjmp or related
  /// functions with attribute "returns twice", but doesn't have
  /// the attribute itself.
  /// This is used to limit optimizations which cannot reason
  /// about the control flow of such functions.
  bool ExposesReturnsTwice = false;

  /// True if the function includes any inline assembly.
  bool HasInlineAsm = false;

  /// True if any WinCFI instruction have been emitted in this function.
  Optional<bool> HasWinCFI;

  /// Current high-level properties of the IR of the function (e.g. is in SSA
  /// form or whether registers have been allocated)
  MachineFunctionProperties Properties;

  // Allocation management for pseudo source values.
  std::unique_ptr<PseudoSourceValueManager> PSVManager;

  /// List of moves done by a function's prolog.  Used to construct frame maps
  /// by debug and exception handling consumers.
  std::vector<MCCFIInstruction> FrameInstructions;

  /// \name Exception Handling
  /// \{

  /// List of LandingPadInfo describing the landing pad information.
  std::vector<LandingPadInfo> LandingPads;

  /// Map a landing pad's EH symbol to the call site indexes.
  DenseMap<MCSymbol*, SmallVector<unsigned, 4> > LPadToCallSiteMap;

  /// Map of invoke call site index values to associated begin EH_LABEL.
  DenseMap<MCSymbol*, unsigned> CallSiteMap;

  bool CallsEHReturn = false;
  bool CallsUnwindInit = false;
  bool HasEHFunclets = false;

  /// List of C++ TypeInfo used.
  std::vector<const GlobalValue *> TypeInfos;

  /// List of typeids encoding filters used.
  std::vector<unsigned> FilterIds;

  /// List of the indices in FilterIds corresponding to filter terminators.
  std::vector<unsigned> FilterEnds;

  EHPersonality PersonalityTypeCache = EHPersonality::Unknown;

  /// \}

  MachineFunction(const MachineFunction &) = delete;
  void operator=(const MachineFunction&) = delete;

  /// Clear all the members of this MachineFunction, but the ones used
  /// to initialize again the MachineFunction.
  /// More specifically, this deallocates all the dynamically allocated
  /// objects and get rid of all the XXXInfo data structure, but keep
  /// unchanged the references to Fn, Target, MMI, and FunctionNumber.
  void clear();
  /// Allocate and initialize the different members.
  /// In particular, the XXXInfo data structure.
  /// \pre Fn, Target, MMI, and FunctionNumber are properly set.
  void init();
public:

  struct VariableDbgInfo {
    const DILocalVariable *Var;
    const DIExpression *Expr;
    unsigned Slot;
    const DILocation *Loc;

    VariableDbgInfo(const DILocalVariable *Var, const DIExpression *Expr,
                    unsigned Slot, const DILocation *Loc)
        : Var(Var), Expr(Expr), Slot(Slot), Loc(Loc) {}
  };
  typedef SmallVector<VariableDbgInfo, 4> VariableDbgInfoMapTy;
  VariableDbgInfoMapTy VariableDbgInfos;

  MachineFunction(const Function *Fn, const TargetMachine &TM,
                  unsigned FunctionNum, MachineModuleInfo &MMI);
  ~MachineFunction();

  /// Reset the instance as if it was just created.
  void reset() {
    clear();
    init();
  }

  MachineModuleInfo &getMMI() const { return MMI; }
  MCContext &getContext() const { return Ctx; }

  PseudoSourceValueManager &getPSVManager() const { return *PSVManager; }

  /// Return the DataLayout attached to the Module associated to this MF.
  const DataLayout &getDataLayout() const;

  /// getFunction - Return the LLVM function that this machine code represents
  ///
  const Function *getFunction() const { return Fn; }

  /// getName - Return the name of the corresponding LLVM function.
  ///
  StringRef getName() const;

  /// getFunctionNumber - Return a unique ID for the current function.
  ///
  unsigned getFunctionNumber() const { return FunctionNumber; }

  /// getTarget - Return the target machine this machine code is compiled with
  ///
  const TargetMachine &getTarget() const { return Target; }

  /// getSubtarget - Return the subtarget for which this machine code is being
  /// compiled.
  const TargetSubtargetInfo &getSubtarget() const { return *STI; }
  void setSubtarget(const TargetSubtargetInfo *ST) { STI = ST; }

  /// getSubtarget - This method returns a pointer to the specified type of
  /// TargetSubtargetInfo.  In debug builds, it verifies that the object being
  /// returned is of the correct type.
  template<typename STC> const STC &getSubtarget() const {
    return *static_cast<const STC *>(STI);
  }

  /// getRegInfo - Return information about the registers currently in use.
  ///
  MachineRegisterInfo &getRegInfo() { return *RegInfo; }
  const MachineRegisterInfo &getRegInfo() const { return *RegInfo; }

  /// getFrameInfo - Return the frame info object for the current function.
  /// This object contains information about objects allocated on the stack
  /// frame of the current function in an abstract way.
  ///
  MachineFrameInfo &getFrameInfo() { return *FrameInfo; }
  const MachineFrameInfo &getFrameInfo() const { return *FrameInfo; }

  /// getJumpTableInfo - Return the jump table info object for the current
  /// function.  This object contains information about jump tables in the
  /// current function.  If the current function has no jump tables, this will
  /// return null.
  const MachineJumpTableInfo *getJumpTableInfo() const { return JumpTableInfo; }
  MachineJumpTableInfo *getJumpTableInfo() { return JumpTableInfo; }

  /// getOrCreateJumpTableInfo - Get the JumpTableInfo for this function, if it
  /// does already exist, allocate one.
  MachineJumpTableInfo *getOrCreateJumpTableInfo(unsigned JTEntryKind);

  /// getConstantPool - Return the constant pool object for the current
  /// function.
  ///
  MachineConstantPool *getConstantPool() { return ConstantPool; }
  const MachineConstantPool *getConstantPool() const { return ConstantPool; }

  /// getWinEHFuncInfo - Return information about how the current function uses
  /// Windows exception handling. Returns null for functions that don't use
  /// funclets for exception handling.
  const WinEHFuncInfo *getWinEHFuncInfo() const { return WinEHInfo; }
  WinEHFuncInfo *getWinEHFuncInfo() { return WinEHInfo; }

  /// getAlignment - Return the alignment (log2, not bytes) of the function.
  ///
  unsigned getAlignment() const { return Alignment; }

  /// setAlignment - Set the alignment (log2, not bytes) of the function.
  ///
  void setAlignment(unsigned A) { Alignment = A; }

  /// ensureAlignment - Make sure the function is at least 1 << A bytes aligned.
  void ensureAlignment(unsigned A) {
    if (Alignment < A) Alignment = A;
  }

  /// exposesReturnsTwice - Returns true if the function calls setjmp or
  /// any other similar functions with attribute "returns twice" without
  /// having the attribute itself.
  bool exposesReturnsTwice() const {
    return ExposesReturnsTwice;
  }

  /// setCallsSetJmp - Set a flag that indicates if there's a call to
  /// a "returns twice" function.
  void setExposesReturnsTwice(bool B) {
    ExposesReturnsTwice = B;
  }

  /// Returns true if the function contains any inline assembly.
  bool hasInlineAsm() const {
    return HasInlineAsm;
  }

  /// Set a flag that indicates that the function contains inline assembly.
  void setHasInlineAsm(bool B) {
    HasInlineAsm = B;
  }

  bool hasWinCFI() const {
    assert(HasWinCFI.hasValue() && "HasWinCFI not set yet!");
    return *HasWinCFI;
  }
  void setHasWinCFI(bool v) { HasWinCFI = v; }

  /// Get the function properties
  const MachineFunctionProperties &getProperties() const { return Properties; }
  MachineFunctionProperties &getProperties() { return Properties; }

  /// getInfo - Keep track of various per-function pieces of information for
  /// backends that would like to do so.
  ///
  template<typename Ty>
  Ty *getInfo() {
    if (!MFInfo)
      MFInfo = Ty::template create<Ty>(Allocator, *this);
    return static_cast<Ty*>(MFInfo);
  }

  template<typename Ty>
  const Ty *getInfo() const {
     return const_cast<MachineFunction*>(this)->getInfo<Ty>();
  }

  /// getBlockNumbered - MachineBasicBlocks are automatically numbered when they
  /// are inserted into the machine function.  The block number for a machine
  /// basic block can be found by using the MBB::getBlockNumber method, this
  /// method provides the inverse mapping.
  ///
  MachineBasicBlock *getBlockNumbered(unsigned N) const {
    assert(N < MBBNumbering.size() && "Illegal block number");
    assert(MBBNumbering[N] && "Block was removed from the machine function!");
    return MBBNumbering[N];
  }

  /// Should we be emitting segmented stack stuff for the function
  bool shouldSplitStack() const;

  /// getNumBlockIDs - Return the number of MBB ID's allocated.
  ///
  unsigned getNumBlockIDs() const { return (unsigned)MBBNumbering.size(); }

  /// RenumberBlocks - This discards all of the MachineBasicBlock numbers and
  /// recomputes them.  This guarantees that the MBB numbers are sequential,
  /// dense, and match the ordering of the blocks within the function.  If a
  /// specific MachineBasicBlock is specified, only that block and those after
  /// it are renumbered.
  void RenumberBlocks(MachineBasicBlock *MBBFrom = nullptr);

  /// print - Print out the MachineFunction in a format suitable for debugging
  /// to the specified stream.
  ///
  void print(raw_ostream &OS, const SlotIndexes* = nullptr) const;

  /// viewCFG - This function is meant for use from the debugger.  You can just
  /// say 'call F->viewCFG()' and a ghostview window should pop up from the
  /// program, displaying the CFG of the current function with the code for each
  /// basic block inside.  This depends on there being a 'dot' and 'gv' program
  /// in your path.
  ///
  void viewCFG() const;

  /// viewCFGOnly - This function is meant for use from the debugger.  It works
  /// just like viewCFG, but it does not include the contents of basic blocks
  /// into the nodes, just the label.  If you are only interested in the CFG
  /// this can make the graph smaller.
  ///
  void viewCFGOnly() const;

  /// dump - Print the current MachineFunction to cerr, useful for debugger use.
  ///
  void dump() const;

  /// Run the current MachineFunction through the machine code verifier, useful
  /// for debugger use.
  /// \returns true if no problems were found.
  bool verify(Pass *p = nullptr, const char *Banner = nullptr,
              bool AbortOnError = true) const;

  // Provide accessors for the MachineBasicBlock list...
  typedef BasicBlockListType::iterator iterator;
  typedef BasicBlockListType::const_iterator const_iterator;
  typedef BasicBlockListType::const_reverse_iterator const_reverse_iterator;
  typedef BasicBlockListType::reverse_iterator reverse_iterator;

  /// Support for MachineBasicBlock::getNextNode().
  static BasicBlockListType MachineFunction::*
  getSublistAccess(MachineBasicBlock *) {
    return &MachineFunction::BasicBlocks;
  }

  /// addLiveIn - Add the specified physical register as a live-in value and
  /// create a corresponding virtual register for it.
  unsigned addLiveIn(unsigned PReg, const TargetRegisterClass *RC);

  //===--------------------------------------------------------------------===//
  // BasicBlock accessor functions.
  //
  iterator                 begin()       { return BasicBlocks.begin(); }
  const_iterator           begin() const { return BasicBlocks.begin(); }
  iterator                 end  ()       { return BasicBlocks.end();   }
  const_iterator           end  () const { return BasicBlocks.end();   }

  reverse_iterator        rbegin()       { return BasicBlocks.rbegin(); }
  const_reverse_iterator  rbegin() const { return BasicBlocks.rbegin(); }
  reverse_iterator        rend  ()       { return BasicBlocks.rend();   }
  const_reverse_iterator  rend  () const { return BasicBlocks.rend();   }

  unsigned                  size() const { return (unsigned)BasicBlocks.size();}
  bool                     empty() const { return BasicBlocks.empty(); }
  const MachineBasicBlock &front() const { return BasicBlocks.front(); }
        MachineBasicBlock &front()       { return BasicBlocks.front(); }
  const MachineBasicBlock & back() const { return BasicBlocks.back(); }
        MachineBasicBlock & back()       { return BasicBlocks.back(); }

  void push_back (MachineBasicBlock *MBB) { BasicBlocks.push_back (MBB); }
  void push_front(MachineBasicBlock *MBB) { BasicBlocks.push_front(MBB); }
  void insert(iterator MBBI, MachineBasicBlock *MBB) {
    BasicBlocks.insert(MBBI, MBB);
  }
  void splice(iterator InsertPt, iterator MBBI) {
    BasicBlocks.splice(InsertPt, BasicBlocks, MBBI);
  }
  void splice(iterator InsertPt, MachineBasicBlock *MBB) {
    BasicBlocks.splice(InsertPt, BasicBlocks, MBB);
  }
  void splice(iterator InsertPt, iterator MBBI, iterator MBBE) {
    BasicBlocks.splice(InsertPt, BasicBlocks, MBBI, MBBE);
  }

  void remove(iterator MBBI) { BasicBlocks.remove(MBBI); }
  void remove(MachineBasicBlock *MBBI) { BasicBlocks.remove(MBBI); }
  void erase(iterator MBBI) { BasicBlocks.erase(MBBI); }
  void erase(MachineBasicBlock *MBBI) { BasicBlocks.erase(MBBI); }

  template <typename Comp>
  void sort(Comp comp) {
    BasicBlocks.sort(comp);
  }

  //===--------------------------------------------------------------------===//
  // Internal functions used to automatically number MachineBasicBlocks
  //

  /// \brief Adds the MBB to the internal numbering. Returns the unique number
  /// assigned to the MBB.
  ///
  unsigned addToMBBNumbering(MachineBasicBlock *MBB) {
    MBBNumbering.push_back(MBB);
    return (unsigned)MBBNumbering.size()-1;
  }

  /// removeFromMBBNumbering - Remove the specific machine basic block from our
  /// tracker, this is only really to be used by the MachineBasicBlock
  /// implementation.
  void removeFromMBBNumbering(unsigned N) {
    assert(N < MBBNumbering.size() && "Illegal basic block #");
    MBBNumbering[N] = nullptr;
  }

  /// CreateMachineInstr - Allocate a new MachineInstr. Use this instead
  /// of `new MachineInstr'.
  ///
  MachineInstr *CreateMachineInstr(const MCInstrDesc &MCID, const DebugLoc &DL,
                                   bool NoImp = false);

  /// CloneMachineInstr - Create a new MachineInstr which is a copy of the
  /// 'Orig' instruction, identical in all ways except the instruction
  /// has no parent, prev, or next.
  ///
  /// See also TargetInstrInfo::duplicate() for target-specific fixes to cloned
  /// instructions.
  MachineInstr *CloneMachineInstr(const MachineInstr *Orig);

  /// DeleteMachineInstr - Delete the given MachineInstr.
  ///
  void DeleteMachineInstr(MachineInstr *MI);

  /// CreateMachineBasicBlock - Allocate a new MachineBasicBlock. Use this
  /// instead of `new MachineBasicBlock'.
  ///
  MachineBasicBlock *CreateMachineBasicBlock(const BasicBlock *bb = nullptr);

  /// DeleteMachineBasicBlock - Delete the given MachineBasicBlock.
  ///
  void DeleteMachineBasicBlock(MachineBasicBlock *MBB);

  /// getMachineMemOperand - Allocate a new MachineMemOperand.
  /// MachineMemOperands are owned by the MachineFunction and need not be
  /// explicitly deallocated.
  MachineMemOperand *getMachineMemOperand(
      MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
      unsigned base_alignment, const AAMDNodes &AAInfo = AAMDNodes(),
      const MDNode *Ranges = nullptr,
      SynchronizationScope SynchScope = CrossThread,
      AtomicOrdering Ordering = AtomicOrdering::NotAtomic,
      AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic);

  /// getMachineMemOperand - Allocate a new MachineMemOperand by copying
  /// an existing one, adjusting by an offset and using the given size.
  /// MachineMemOperands are owned by the MachineFunction and need not be
  /// explicitly deallocated.
  MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO,
                                          int64_t Offset, uint64_t Size);

  typedef ArrayRecycler<MachineOperand>::Capacity OperandCapacity;

  /// Allocate an array of MachineOperands. This is only intended for use by
  /// internal MachineInstr functions.
  MachineOperand *allocateOperandArray(OperandCapacity Cap) {
    return OperandRecycler.allocate(Cap, Allocator);
  }

  /// Dellocate an array of MachineOperands and recycle the memory. This is
  /// only intended for use by internal MachineInstr functions.
  /// Cap must be the same capacity that was used to allocate the array.
  void deallocateOperandArray(OperandCapacity Cap, MachineOperand *Array) {
    OperandRecycler.deallocate(Cap, Array);
  }

  /// \brief Allocate and initialize a register mask with @p NumRegister bits.
  uint32_t *allocateRegisterMask(unsigned NumRegister) {
    unsigned Size = (NumRegister + 31) / 32;
    uint32_t *Mask = Allocator.Allocate<uint32_t>(Size);
    for (unsigned i = 0; i != Size; ++i)
      Mask[i] = 0;
    return Mask;
  }

  /// allocateMemRefsArray - Allocate an array to hold MachineMemOperand
  /// pointers.  This array is owned by the MachineFunction.
  MachineInstr::mmo_iterator allocateMemRefsArray(unsigned long Num);

  /// extractLoadMemRefs - Allocate an array and populate it with just the
  /// load information from the given MachineMemOperand sequence.
  std::pair<MachineInstr::mmo_iterator,
            MachineInstr::mmo_iterator>
    extractLoadMemRefs(MachineInstr::mmo_iterator Begin,
                       MachineInstr::mmo_iterator End);

  /// extractStoreMemRefs - Allocate an array and populate it with just the
  /// store information from the given MachineMemOperand sequence.
  std::pair<MachineInstr::mmo_iterator,
            MachineInstr::mmo_iterator>
    extractStoreMemRefs(MachineInstr::mmo_iterator Begin,
                        MachineInstr::mmo_iterator End);

  /// Allocate a string and populate it with the given external symbol name.
  const char *createExternalSymbolName(StringRef Name);

  //===--------------------------------------------------------------------===//
  // Label Manipulation.
  //

  /// getJTISymbol - Return the MCSymbol for the specified non-empty jump table.
  /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
  /// normal 'L' label is returned.
  MCSymbol *getJTISymbol(unsigned JTI, MCContext &Ctx,
                         bool isLinkerPrivate = false) const;

  /// getPICBaseSymbol - Return a function-local symbol to represent the PIC
  /// base.
  MCSymbol *getPICBaseSymbol() const;

  /// Returns a reference to a list of cfi instructions in the function's
  /// prologue.  Used to construct frame maps for debug and exception handling
  /// comsumers.
  const std::vector<MCCFIInstruction> &getFrameInstructions() const {
    return FrameInstructions;
  }

  LLVM_NODISCARD unsigned addFrameInst(const MCCFIInstruction &Inst) {
    FrameInstructions.push_back(Inst);
    return FrameInstructions.size() - 1;
  }

  /// \name Exception Handling
  /// \{

  bool callsEHReturn() const { return CallsEHReturn; }
  void setCallsEHReturn(bool b) { CallsEHReturn = b; }

  bool callsUnwindInit() const { return CallsUnwindInit; }
  void setCallsUnwindInit(bool b) { CallsUnwindInit = b; }

  bool hasEHFunclets() const { return HasEHFunclets; }
  void setHasEHFunclets(bool V) { HasEHFunclets = V; }

  /// Find or create an LandingPadInfo for the specified MachineBasicBlock.
  LandingPadInfo &getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad);

  /// Remap landing pad labels and remove any deleted landing pads.
  void tidyLandingPads(DenseMap<MCSymbol*, uintptr_t> *LPMap = nullptr);

  /// Return a reference to the landing pad info for the current function.
  const std::vector<LandingPadInfo> &getLandingPads() const {
    return LandingPads;
  }

  /// Provide the begin and end labels of an invoke style call and associate it
  /// with a try landing pad block.
  void addInvoke(MachineBasicBlock *LandingPad,
                 MCSymbol *BeginLabel, MCSymbol *EndLabel);

  /// Add a new panding pad.  Returns the label ID for the landing pad entry.
  MCSymbol *addLandingPad(MachineBasicBlock *LandingPad);

  /// Provide the catch typeinfo for a landing pad.
  void addCatchTypeInfo(MachineBasicBlock *LandingPad,
                        ArrayRef<const GlobalValue *> TyInfo);

  /// Provide the filter typeinfo for a landing pad.
  void addFilterTypeInfo(MachineBasicBlock *LandingPad,
                         ArrayRef<const GlobalValue *> TyInfo);

  /// Add a cleanup action for a landing pad.
  void addCleanup(MachineBasicBlock *LandingPad);

  void addSEHCatchHandler(MachineBasicBlock *LandingPad, const Function *Filter,
                          const BlockAddress *RecoverLabel);

  void addSEHCleanupHandler(MachineBasicBlock *LandingPad,
                            const Function *Cleanup);

  /// Return the type id for the specified typeinfo.  This is function wide.
  unsigned getTypeIDFor(const GlobalValue *TI);

  /// Return the id of the filter encoded by TyIds.  This is function wide.
  int getFilterIDFor(std::vector<unsigned> &TyIds);

  /// Map the landing pad's EH symbol to the call site indexes.
  void setCallSiteLandingPad(MCSymbol *Sym, ArrayRef<unsigned> Sites);

  /// Get the call site indexes for a landing pad EH symbol.
  SmallVectorImpl<unsigned> &getCallSiteLandingPad(MCSymbol *Sym) {
    assert(hasCallSiteLandingPad(Sym) &&
           "missing call site number for landing pad!");
    return LPadToCallSiteMap[Sym];
  }

  /// Return true if the landing pad Eh symbol has an associated call site.
  bool hasCallSiteLandingPad(MCSymbol *Sym) {
    return !LPadToCallSiteMap[Sym].empty();
  }

  /// Map the begin label for a call site.
  void setCallSiteBeginLabel(MCSymbol *BeginLabel, unsigned Site) {
    CallSiteMap[BeginLabel] = Site;
  }

  /// Get the call site number for a begin label.
  unsigned getCallSiteBeginLabel(MCSymbol *BeginLabel) const {
    assert(hasCallSiteBeginLabel(BeginLabel) &&
           "Missing call site number for EH_LABEL!");
    return CallSiteMap.lookup(BeginLabel);
  }

  /// Return true if the begin label has a call site number associated with it.
  bool hasCallSiteBeginLabel(MCSymbol *BeginLabel) const {
    return CallSiteMap.count(BeginLabel);
  }

  /// Return a reference to the C++ typeinfo for the current function.
  const std::vector<const GlobalValue *> &getTypeInfos() const {
    return TypeInfos;
  }

  /// Return a reference to the typeids encoding filters used in the current
  /// function.
  const std::vector<unsigned> &getFilterIds() const {
    return FilterIds;
  }

  /// \}

  /// Collect information used to emit debugging information of a variable.
  void setVariableDbgInfo(const DILocalVariable *Var, const DIExpression *Expr,
                          unsigned Slot, const DILocation *Loc) {
    VariableDbgInfos.emplace_back(Var, Expr, Slot, Loc);
  }

  VariableDbgInfoMapTy &getVariableDbgInfo() { return VariableDbgInfos; }
  const VariableDbgInfoMapTy &getVariableDbgInfo() const {
    return VariableDbgInfos;
  }
};

/// \name Exception Handling
/// \{

/// Extract the exception handling information from the landingpad instruction
/// and add them to the specified machine module info.
void addLandingPadInfo(const LandingPadInst &I, MachineBasicBlock &MBB);

/// \}

//===--------------------------------------------------------------------===//
// GraphTraits specializations for function basic block graphs (CFGs)
//===--------------------------------------------------------------------===//

// Provide specializations of GraphTraits to be able to treat a
// machine function as a graph of machine basic blocks... these are
// the same as the machine basic block iterators, except that the root
// node is implicitly the first node of the function.
//
template <> struct GraphTraits<MachineFunction*> :
  public GraphTraits<MachineBasicBlock*> {
  static NodeRef getEntryNode(MachineFunction *F) { return &F->front(); }

  // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
  typedef pointer_iterator<MachineFunction::iterator> nodes_iterator;
  static nodes_iterator nodes_begin(MachineFunction *F) {
    return nodes_iterator(F->begin());
  }
  static nodes_iterator nodes_end(MachineFunction *F) {
    return nodes_iterator(F->end());
  }
  static unsigned       size       (MachineFunction *F) { return F->size(); }
};
template <> struct GraphTraits<const MachineFunction*> :
  public GraphTraits<const MachineBasicBlock*> {
  static NodeRef getEntryNode(const MachineFunction *F) { return &F->front(); }

  // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
  typedef pointer_iterator<MachineFunction::const_iterator> nodes_iterator;
  static nodes_iterator nodes_begin(const MachineFunction *F) {
    return nodes_iterator(F->begin());
  }
  static nodes_iterator nodes_end  (const MachineFunction *F) {
    return nodes_iterator(F->end());
  }
  static unsigned       size       (const MachineFunction *F)  {
    return F->size();
  }
};


// Provide specializations of GraphTraits to be able to treat a function as a
// graph of basic blocks... and to walk it in inverse order.  Inverse order for
// a function is considered to be when traversing the predecessor edges of a BB
// instead of the successor edges.
//
template <> struct GraphTraits<Inverse<MachineFunction*> > :
  public GraphTraits<Inverse<MachineBasicBlock*> > {
  static NodeRef getEntryNode(Inverse<MachineFunction *> G) {
    return &G.Graph->front();
  }
};
template <> struct GraphTraits<Inverse<const MachineFunction*> > :
  public GraphTraits<Inverse<const MachineBasicBlock*> > {
  static NodeRef getEntryNode(Inverse<const MachineFunction *> G) {
    return &G.Graph->front();
  }
};

} // End llvm namespace

#endif