/usr/include/llvm-4.0/llvm/CodeGen/MachineInstr.h is in llvm-4.0-dev 1:4.0.1-10.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 | //===-- llvm/CodeGen/MachineInstr.h - MachineInstr class --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the declaration of the MachineInstr class, which is the
// basic representation for all target dependent machine instructions used by
// the back end.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_MACHINEINSTR_H
#define LLVM_CODEGEN_MACHINEINSTR_H
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ilist.h"
#include "llvm/ADT/ilist_node.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Support/ArrayRecycler.h"
#include "llvm/Target/TargetOpcodes.h"
namespace llvm {
class StringRef;
template <typename T> class ArrayRef;
template <typename T> class SmallVectorImpl;
class DILocalVariable;
class DIExpression;
class TargetInstrInfo;
class TargetRegisterClass;
class TargetRegisterInfo;
class MachineFunction;
class MachineMemOperand;
//===----------------------------------------------------------------------===//
/// Representation of each machine instruction.
///
/// This class isn't a POD type, but it must have a trivial destructor. When a
/// MachineFunction is deleted, all the contained MachineInstrs are deallocated
/// without having their destructor called.
///
class MachineInstr
: public ilist_node_with_parent<MachineInstr, MachineBasicBlock,
ilist_sentinel_tracking<true>> {
public:
typedef MachineMemOperand **mmo_iterator;
/// Flags to specify different kinds of comments to output in
/// assembly code. These flags carry semantic information not
/// otherwise easily derivable from the IR text.
///
enum CommentFlag {
ReloadReuse = 0x1 // higher bits are reserved for target dep comments.
};
enum MIFlag {
NoFlags = 0,
FrameSetup = 1 << 0, // Instruction is used as a part of
// function frame setup code.
FrameDestroy = 1 << 1, // Instruction is used as a part of
// function frame destruction code.
BundledPred = 1 << 2, // Instruction has bundled predecessors.
BundledSucc = 1 << 3 // Instruction has bundled successors.
};
private:
const MCInstrDesc *MCID; // Instruction descriptor.
MachineBasicBlock *Parent; // Pointer to the owning basic block.
// Operands are allocated by an ArrayRecycler.
MachineOperand *Operands; // Pointer to the first operand.
unsigned NumOperands; // Number of operands on instruction.
typedef ArrayRecycler<MachineOperand>::Capacity OperandCapacity;
OperandCapacity CapOperands; // Capacity of the Operands array.
uint8_t Flags; // Various bits of additional
// information about machine
// instruction.
uint8_t AsmPrinterFlags; // Various bits of information used by
// the AsmPrinter to emit helpful
// comments. This is *not* semantic
// information. Do not use this for
// anything other than to convey comment
// information to AsmPrinter.
uint8_t NumMemRefs; // Information on memory references.
// Note that MemRefs == nullptr, means 'don't know', not 'no memory access'.
// Calling code must treat missing information conservatively. If the number
// of memory operands required to be precise exceeds the maximum value of
// NumMemRefs - currently 256 - we remove the operands entirely. Note also
// that this is a non-owning reference to a shared copy on write buffer owned
// by the MachineFunction and created via MF.allocateMemRefsArray.
mmo_iterator MemRefs;
DebugLoc debugLoc; // Source line information.
MachineInstr(const MachineInstr&) = delete;
void operator=(const MachineInstr&) = delete;
// Use MachineFunction::DeleteMachineInstr() instead.
~MachineInstr() = delete;
// Intrusive list support
friend struct ilist_traits<MachineInstr>;
friend struct ilist_callback_traits<MachineBasicBlock>;
void setParent(MachineBasicBlock *P) { Parent = P; }
/// This constructor creates a copy of the given
/// MachineInstr in the given MachineFunction.
MachineInstr(MachineFunction &, const MachineInstr &);
/// This constructor create a MachineInstr and add the implicit operands.
/// It reserves space for number of operands specified by
/// MCInstrDesc. An explicit DebugLoc is supplied.
MachineInstr(MachineFunction &, const MCInstrDesc &MCID, DebugLoc dl,
bool NoImp = false);
// MachineInstrs are pool-allocated and owned by MachineFunction.
friend class MachineFunction;
public:
const MachineBasicBlock* getParent() const { return Parent; }
MachineBasicBlock* getParent() { return Parent; }
/// Return the asm printer flags bitvector.
uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
/// Clear the AsmPrinter bitvector.
void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
/// Return whether an AsmPrinter flag is set.
bool getAsmPrinterFlag(CommentFlag Flag) const {
return AsmPrinterFlags & Flag;
}
/// Set a flag for the AsmPrinter.
void setAsmPrinterFlag(uint8_t Flag) {
AsmPrinterFlags |= Flag;
}
/// Clear specific AsmPrinter flags.
void clearAsmPrinterFlag(CommentFlag Flag) {
AsmPrinterFlags &= ~Flag;
}
/// Return the MI flags bitvector.
uint8_t getFlags() const {
return Flags;
}
/// Return whether an MI flag is set.
bool getFlag(MIFlag Flag) const {
return Flags & Flag;
}
/// Set a MI flag.
void setFlag(MIFlag Flag) {
Flags |= (uint8_t)Flag;
}
void setFlags(unsigned flags) {
// Filter out the automatically maintained flags.
unsigned Mask = BundledPred | BundledSucc;
Flags = (Flags & Mask) | (flags & ~Mask);
}
/// clearFlag - Clear a MI flag.
void clearFlag(MIFlag Flag) {
Flags &= ~((uint8_t)Flag);
}
/// Return true if MI is in a bundle (but not the first MI in a bundle).
///
/// A bundle looks like this before it's finalized:
/// ----------------
/// | MI |
/// ----------------
/// |
/// ----------------
/// | MI * |
/// ----------------
/// |
/// ----------------
/// | MI * |
/// ----------------
/// In this case, the first MI starts a bundle but is not inside a bundle, the
/// next 2 MIs are considered "inside" the bundle.
///
/// After a bundle is finalized, it looks like this:
/// ----------------
/// | Bundle |
/// ----------------
/// |
/// ----------------
/// | MI * |
/// ----------------
/// |
/// ----------------
/// | MI * |
/// ----------------
/// |
/// ----------------
/// | MI * |
/// ----------------
/// The first instruction has the special opcode "BUNDLE". It's not "inside"
/// a bundle, but the next three MIs are.
bool isInsideBundle() const {
return getFlag(BundledPred);
}
/// Return true if this instruction part of a bundle. This is true
/// if either itself or its following instruction is marked "InsideBundle".
bool isBundled() const {
return isBundledWithPred() || isBundledWithSucc();
}
/// Return true if this instruction is part of a bundle, and it is not the
/// first instruction in the bundle.
bool isBundledWithPred() const { return getFlag(BundledPred); }
/// Return true if this instruction is part of a bundle, and it is not the
/// last instruction in the bundle.
bool isBundledWithSucc() const { return getFlag(BundledSucc); }
/// Bundle this instruction with its predecessor. This can be an unbundled
/// instruction, or it can be the first instruction in a bundle.
void bundleWithPred();
/// Bundle this instruction with its successor. This can be an unbundled
/// instruction, or it can be the last instruction in a bundle.
void bundleWithSucc();
/// Break bundle above this instruction.
void unbundleFromPred();
/// Break bundle below this instruction.
void unbundleFromSucc();
/// Returns the debug location id of this MachineInstr.
const DebugLoc &getDebugLoc() const { return debugLoc; }
/// Return the debug variable referenced by
/// this DBG_VALUE instruction.
const DILocalVariable *getDebugVariable() const;
/// Return the complex address expression referenced by
/// this DBG_VALUE instruction.
const DIExpression *getDebugExpression() const;
/// Emit an error referring to the source location of this instruction.
/// This should only be used for inline assembly that is somehow
/// impossible to compile. Other errors should have been handled much
/// earlier.
///
/// If this method returns, the caller should try to recover from the error.
///
void emitError(StringRef Msg) const;
/// Returns the target instruction descriptor of this MachineInstr.
const MCInstrDesc &getDesc() const { return *MCID; }
/// Returns the opcode of this MachineInstr.
unsigned getOpcode() const { return MCID->Opcode; }
/// Access to explicit operands of the instruction.
///
unsigned getNumOperands() const { return NumOperands; }
const MachineOperand& getOperand(unsigned i) const {
assert(i < getNumOperands() && "getOperand() out of range!");
return Operands[i];
}
MachineOperand& getOperand(unsigned i) {
assert(i < getNumOperands() && "getOperand() out of range!");
return Operands[i];
}
/// Returns the number of non-implicit operands.
unsigned getNumExplicitOperands() const;
/// iterator/begin/end - Iterate over all operands of a machine instruction.
typedef MachineOperand *mop_iterator;
typedef const MachineOperand *const_mop_iterator;
mop_iterator operands_begin() { return Operands; }
mop_iterator operands_end() { return Operands + NumOperands; }
const_mop_iterator operands_begin() const { return Operands; }
const_mop_iterator operands_end() const { return Operands + NumOperands; }
iterator_range<mop_iterator> operands() {
return make_range(operands_begin(), operands_end());
}
iterator_range<const_mop_iterator> operands() const {
return make_range(operands_begin(), operands_end());
}
iterator_range<mop_iterator> explicit_operands() {
return make_range(operands_begin(),
operands_begin() + getNumExplicitOperands());
}
iterator_range<const_mop_iterator> explicit_operands() const {
return make_range(operands_begin(),
operands_begin() + getNumExplicitOperands());
}
iterator_range<mop_iterator> implicit_operands() {
return make_range(explicit_operands().end(), operands_end());
}
iterator_range<const_mop_iterator> implicit_operands() const {
return make_range(explicit_operands().end(), operands_end());
}
/// Returns a range over all explicit operands that are register definitions.
/// Implicit definition are not included!
iterator_range<mop_iterator> defs() {
return make_range(operands_begin(),
operands_begin() + getDesc().getNumDefs());
}
/// \copydoc defs()
iterator_range<const_mop_iterator> defs() const {
return make_range(operands_begin(),
operands_begin() + getDesc().getNumDefs());
}
/// Returns a range that includes all operands that are register uses.
/// This may include unrelated operands which are not register uses.
iterator_range<mop_iterator> uses() {
return make_range(operands_begin() + getDesc().getNumDefs(),
operands_end());
}
/// \copydoc uses()
iterator_range<const_mop_iterator> uses() const {
return make_range(operands_begin() + getDesc().getNumDefs(),
operands_end());
}
iterator_range<mop_iterator> explicit_uses() {
return make_range(operands_begin() + getDesc().getNumDefs(),
operands_begin() + getNumExplicitOperands() );
}
iterator_range<const_mop_iterator> explicit_uses() const {
return make_range(operands_begin() + getDesc().getNumDefs(),
operands_begin() + getNumExplicitOperands() );
}
/// Returns the number of the operand iterator \p I points to.
unsigned getOperandNo(const_mop_iterator I) const {
return I - operands_begin();
}
/// Access to memory operands of the instruction
mmo_iterator memoperands_begin() const { return MemRefs; }
mmo_iterator memoperands_end() const { return MemRefs + NumMemRefs; }
/// Return true if we don't have any memory operands which described the the
/// memory access done by this instruction. If this is true, calling code
/// must be conservative.
bool memoperands_empty() const { return NumMemRefs == 0; }
iterator_range<mmo_iterator> memoperands() {
return make_range(memoperands_begin(), memoperands_end());
}
iterator_range<mmo_iterator> memoperands() const {
return make_range(memoperands_begin(), memoperands_end());
}
/// Return true if this instruction has exactly one MachineMemOperand.
bool hasOneMemOperand() const {
return NumMemRefs == 1;
}
/// API for querying MachineInstr properties. They are the same as MCInstrDesc
/// queries but they are bundle aware.
enum QueryType {
IgnoreBundle, // Ignore bundles
AnyInBundle, // Return true if any instruction in bundle has property
AllInBundle // Return true if all instructions in bundle have property
};
/// Return true if the instruction (or in the case of a bundle,
/// the instructions inside the bundle) has the specified property.
/// The first argument is the property being queried.
/// The second argument indicates whether the query should look inside
/// instruction bundles.
bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
// Inline the fast path for unbundled or bundle-internal instructions.
if (Type == IgnoreBundle || !isBundled() || isBundledWithPred())
return getDesc().getFlags() & (1ULL << MCFlag);
// If this is the first instruction in a bundle, take the slow path.
return hasPropertyInBundle(1ULL << MCFlag, Type);
}
/// Return true if this instruction can have a variable number of operands.
/// In this case, the variable operands will be after the normal
/// operands but before the implicit definitions and uses (if any are
/// present).
bool isVariadic(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::Variadic, Type);
}
/// Set if this instruction has an optional definition, e.g.
/// ARM instructions which can set condition code if 's' bit is set.
bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::HasOptionalDef, Type);
}
/// Return true if this is a pseudo instruction that doesn't
/// correspond to a real machine instruction.
bool isPseudo(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::Pseudo, Type);
}
bool isReturn(QueryType Type = AnyInBundle) const {
return hasProperty(MCID::Return, Type);
}
bool isCall(QueryType Type = AnyInBundle) const {
return hasProperty(MCID::Call, Type);
}
/// Returns true if the specified instruction stops control flow
/// from executing the instruction immediately following it. Examples include
/// unconditional branches and return instructions.
bool isBarrier(QueryType Type = AnyInBundle) const {
return hasProperty(MCID::Barrier, Type);
}
/// Returns true if this instruction part of the terminator for a basic block.
/// Typically this is things like return and branch instructions.
///
/// Various passes use this to insert code into the bottom of a basic block,
/// but before control flow occurs.
bool isTerminator(QueryType Type = AnyInBundle) const {
return hasProperty(MCID::Terminator, Type);
}
/// Returns true if this is a conditional, unconditional, or indirect branch.
/// Predicates below can be used to discriminate between
/// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
/// get more information.
bool isBranch(QueryType Type = AnyInBundle) const {
return hasProperty(MCID::Branch, Type);
}
/// Return true if this is an indirect branch, such as a
/// branch through a register.
bool isIndirectBranch(QueryType Type = AnyInBundle) const {
return hasProperty(MCID::IndirectBranch, Type);
}
/// Return true if this is a branch which may fall
/// through to the next instruction or may transfer control flow to some other
/// block. The TargetInstrInfo::AnalyzeBranch method can be used to get more
/// information about this branch.
bool isConditionalBranch(QueryType Type = AnyInBundle) const {
return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type);
}
/// Return true if this is a branch which always
/// transfers control flow to some other block. The
/// TargetInstrInfo::AnalyzeBranch method can be used to get more information
/// about this branch.
bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type);
}
/// Return true if this instruction has a predicate operand that
/// controls execution. It may be set to 'always', or may be set to other
/// values. There are various methods in TargetInstrInfo that can be used to
/// control and modify the predicate in this instruction.
bool isPredicable(QueryType Type = AllInBundle) const {
// If it's a bundle than all bundled instructions must be predicable for this
// to return true.
return hasProperty(MCID::Predicable, Type);
}
/// Return true if this instruction is a comparison.
bool isCompare(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::Compare, Type);
}
/// Return true if this instruction is a move immediate
/// (including conditional moves) instruction.
bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::MoveImm, Type);
}
/// Return true if this instruction is a bitcast instruction.
bool isBitcast(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::Bitcast, Type);
}
/// Return true if this instruction is a select instruction.
bool isSelect(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::Select, Type);
}
/// Return true if this instruction cannot be safely duplicated.
/// For example, if the instruction has a unique labels attached
/// to it, duplicating it would cause multiple definition errors.
bool isNotDuplicable(QueryType Type = AnyInBundle) const {
return hasProperty(MCID::NotDuplicable, Type);
}
/// Return true if this instruction is convergent.
/// Convergent instructions can not be made control-dependent on any
/// additional values.
bool isConvergent(QueryType Type = AnyInBundle) const {
if (isInlineAsm()) {
unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
if (ExtraInfo & InlineAsm::Extra_IsConvergent)
return true;
}
return hasProperty(MCID::Convergent, Type);
}
/// Returns true if the specified instruction has a delay slot
/// which must be filled by the code generator.
bool hasDelaySlot(QueryType Type = AnyInBundle) const {
return hasProperty(MCID::DelaySlot, Type);
}
/// Return true for instructions that can be folded as
/// memory operands in other instructions. The most common use for this
/// is instructions that are simple loads from memory that don't modify
/// the loaded value in any way, but it can also be used for instructions
/// that can be expressed as constant-pool loads, such as V_SETALLONES
/// on x86, to allow them to be folded when it is beneficial.
/// This should only be set on instructions that return a value in their
/// only virtual register definition.
bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::FoldableAsLoad, Type);
}
/// \brief Return true if this instruction behaves
/// the same way as the generic REG_SEQUENCE instructions.
/// E.g., on ARM,
/// dX VMOVDRR rY, rZ
/// is equivalent to
/// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
///
/// Note that for the optimizers to be able to take advantage of
/// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
/// override accordingly.
bool isRegSequenceLike(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::RegSequence, Type);
}
/// \brief Return true if this instruction behaves
/// the same way as the generic EXTRACT_SUBREG instructions.
/// E.g., on ARM,
/// rX, rY VMOVRRD dZ
/// is equivalent to two EXTRACT_SUBREG:
/// rX = EXTRACT_SUBREG dZ, ssub_0
/// rY = EXTRACT_SUBREG dZ, ssub_1
///
/// Note that for the optimizers to be able to take advantage of
/// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
/// override accordingly.
bool isExtractSubregLike(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::ExtractSubreg, Type);
}
/// \brief Return true if this instruction behaves
/// the same way as the generic INSERT_SUBREG instructions.
/// E.g., on ARM,
/// dX = VSETLNi32 dY, rZ, Imm
/// is equivalent to a INSERT_SUBREG:
/// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
///
/// Note that for the optimizers to be able to take advantage of
/// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
/// override accordingly.
bool isInsertSubregLike(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::InsertSubreg, Type);
}
//===--------------------------------------------------------------------===//
// Side Effect Analysis
//===--------------------------------------------------------------------===//
/// Return true if this instruction could possibly read memory.
/// Instructions with this flag set are not necessarily simple load
/// instructions, they may load a value and modify it, for example.
bool mayLoad(QueryType Type = AnyInBundle) const {
if (isInlineAsm()) {
unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
if (ExtraInfo & InlineAsm::Extra_MayLoad)
return true;
}
return hasProperty(MCID::MayLoad, Type);
}
/// Return true if this instruction could possibly modify memory.
/// Instructions with this flag set are not necessarily simple store
/// instructions, they may store a modified value based on their operands, or
/// may not actually modify anything, for example.
bool mayStore(QueryType Type = AnyInBundle) const {
if (isInlineAsm()) {
unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
if (ExtraInfo & InlineAsm::Extra_MayStore)
return true;
}
return hasProperty(MCID::MayStore, Type);
}
/// Return true if this instruction could possibly read or modify memory.
bool mayLoadOrStore(QueryType Type = AnyInBundle) const {
return mayLoad(Type) || mayStore(Type);
}
//===--------------------------------------------------------------------===//
// Flags that indicate whether an instruction can be modified by a method.
//===--------------------------------------------------------------------===//
/// Return true if this may be a 2- or 3-address
/// instruction (of the form "X = op Y, Z, ..."), which produces the same
/// result if Y and Z are exchanged. If this flag is set, then the
/// TargetInstrInfo::commuteInstruction method may be used to hack on the
/// instruction.
///
/// Note that this flag may be set on instructions that are only commutable
/// sometimes. In these cases, the call to commuteInstruction will fail.
/// Also note that some instructions require non-trivial modification to
/// commute them.
bool isCommutable(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::Commutable, Type);
}
/// Return true if this is a 2-address instruction
/// which can be changed into a 3-address instruction if needed. Doing this
/// transformation can be profitable in the register allocator, because it
/// means that the instruction can use a 2-address form if possible, but
/// degrade into a less efficient form if the source and dest register cannot
/// be assigned to the same register. For example, this allows the x86
/// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
/// is the same speed as the shift but has bigger code size.
///
/// If this returns true, then the target must implement the
/// TargetInstrInfo::convertToThreeAddress method for this instruction, which
/// is allowed to fail if the transformation isn't valid for this specific
/// instruction (e.g. shl reg, 4 on x86).
///
bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::ConvertibleTo3Addr, Type);
}
/// Return true if this instruction requires
/// custom insertion support when the DAG scheduler is inserting it into a
/// machine basic block. If this is true for the instruction, it basically
/// means that it is a pseudo instruction used at SelectionDAG time that is
/// expanded out into magic code by the target when MachineInstrs are formed.
///
/// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
/// is used to insert this into the MachineBasicBlock.
bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::UsesCustomInserter, Type);
}
/// Return true if this instruction requires *adjustment*
/// after instruction selection by calling a target hook. For example, this
/// can be used to fill in ARM 's' optional operand depending on whether
/// the conditional flag register is used.
bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::HasPostISelHook, Type);
}
/// Returns true if this instruction is a candidate for remat.
/// This flag is deprecated, please don't use it anymore. If this
/// flag is set, the isReallyTriviallyReMaterializable() method is called to
/// verify the instruction is really rematable.
bool isRematerializable(QueryType Type = AllInBundle) const {
// It's only possible to re-mat a bundle if all bundled instructions are
// re-materializable.
return hasProperty(MCID::Rematerializable, Type);
}
/// Returns true if this instruction has the same cost (or less) than a move
/// instruction. This is useful during certain types of optimizations
/// (e.g., remat during two-address conversion or machine licm)
/// where we would like to remat or hoist the instruction, but not if it costs
/// more than moving the instruction into the appropriate register. Note, we
/// are not marking copies from and to the same register class with this flag.
bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
// Only returns true for a bundle if all bundled instructions are cheap.
return hasProperty(MCID::CheapAsAMove, Type);
}
/// Returns true if this instruction source operands
/// have special register allocation requirements that are not captured by the
/// operand register classes. e.g. ARM::STRD's two source registers must be an
/// even / odd pair, ARM::STM registers have to be in ascending order.
/// Post-register allocation passes should not attempt to change allocations
/// for sources of instructions with this flag.
bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
}
/// Returns true if this instruction def operands
/// have special register allocation requirements that are not captured by the
/// operand register classes. e.g. ARM::LDRD's two def registers must be an
/// even / odd pair, ARM::LDM registers have to be in ascending order.
/// Post-register allocation passes should not attempt to change allocations
/// for definitions of instructions with this flag.
bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
return hasProperty(MCID::ExtraDefRegAllocReq, Type);
}
enum MICheckType {
CheckDefs, // Check all operands for equality
CheckKillDead, // Check all operands including kill / dead markers
IgnoreDefs, // Ignore all definitions
IgnoreVRegDefs // Ignore virtual register definitions
};
/// Return true if this instruction is identical to \p Other.
/// Two instructions are identical if they have the same opcode and all their
/// operands are identical (with respect to MachineOperand::isIdenticalTo()).
/// Note that this means liveness related flags (dead, undef, kill) do not
/// affect the notion of identical.
bool isIdenticalTo(const MachineInstr &Other,
MICheckType Check = CheckDefs) const;
/// Unlink 'this' from the containing basic block, and return it without
/// deleting it.
///
/// This function can not be used on bundled instructions, use
/// removeFromBundle() to remove individual instructions from a bundle.
MachineInstr *removeFromParent();
/// Unlink this instruction from its basic block and return it without
/// deleting it.
///
/// If the instruction is part of a bundle, the other instructions in the
/// bundle remain bundled.
MachineInstr *removeFromBundle();
/// Unlink 'this' from the containing basic block and delete it.
///
/// If this instruction is the header of a bundle, the whole bundle is erased.
/// This function can not be used for instructions inside a bundle, use
/// eraseFromBundle() to erase individual bundled instructions.
void eraseFromParent();
/// Unlink 'this' from the containing basic block and delete it.
///
/// For all definitions mark their uses in DBG_VALUE nodes
/// as undefined. Otherwise like eraseFromParent().
void eraseFromParentAndMarkDBGValuesForRemoval();
/// Unlink 'this' form its basic block and delete it.
///
/// If the instruction is part of a bundle, the other instructions in the
/// bundle remain bundled.
void eraseFromBundle();
bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
/// Returns true if the MachineInstr represents a label.
bool isLabel() const { return isEHLabel() || isGCLabel(); }
bool isCFIInstruction() const {
return getOpcode() == TargetOpcode::CFI_INSTRUCTION;
}
// True if the instruction represents a position in the function.
bool isPosition() const { return isLabel() || isCFIInstruction(); }
bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; }
/// A DBG_VALUE is indirect iff the first operand is a register and
/// the second operand is an immediate.
bool isIndirectDebugValue() const {
return isDebugValue()
&& getOperand(0).isReg()
&& getOperand(1).isImm();
}
bool isPHI() const { return getOpcode() == TargetOpcode::PHI; }
bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
bool isInlineAsm() const { return getOpcode() == TargetOpcode::INLINEASM; }
bool isMSInlineAsm() const {
return getOpcode() == TargetOpcode::INLINEASM && getInlineAsmDialect();
}
bool isStackAligningInlineAsm() const;
InlineAsm::AsmDialect getInlineAsmDialect() const;
bool isInsertSubreg() const {
return getOpcode() == TargetOpcode::INSERT_SUBREG;
}
bool isSubregToReg() const {
return getOpcode() == TargetOpcode::SUBREG_TO_REG;
}
bool isRegSequence() const {
return getOpcode() == TargetOpcode::REG_SEQUENCE;
}
bool isBundle() const {
return getOpcode() == TargetOpcode::BUNDLE;
}
bool isCopy() const {
return getOpcode() == TargetOpcode::COPY;
}
bool isFullCopy() const {
return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
}
bool isExtractSubreg() const {
return getOpcode() == TargetOpcode::EXTRACT_SUBREG;
}
/// Return true if the instruction behaves like a copy.
/// This does not include native copy instructions.
bool isCopyLike() const {
return isCopy() || isSubregToReg();
}
/// Return true is the instruction is an identity copy.
bool isIdentityCopy() const {
return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
getOperand(0).getSubReg() == getOperand(1).getSubReg();
}
/// Return true if this is a transient instruction that is
/// either very likely to be eliminated during register allocation (such as
/// copy-like instructions), or if this instruction doesn't have an
/// execution-time cost.
bool isTransient() const {
switch(getOpcode()) {
default: return false;
// Copy-like instructions are usually eliminated during register allocation.
case TargetOpcode::PHI:
case TargetOpcode::COPY:
case TargetOpcode::INSERT_SUBREG:
case TargetOpcode::SUBREG_TO_REG:
case TargetOpcode::REG_SEQUENCE:
// Pseudo-instructions that don't produce any real output.
case TargetOpcode::IMPLICIT_DEF:
case TargetOpcode::KILL:
case TargetOpcode::CFI_INSTRUCTION:
case TargetOpcode::EH_LABEL:
case TargetOpcode::GC_LABEL:
case TargetOpcode::DBG_VALUE:
return true;
}
}
/// Return the number of instructions inside the MI bundle, excluding the
/// bundle header.
///
/// This is the number of instructions that MachineBasicBlock::iterator
/// skips, 0 for unbundled instructions.
unsigned getBundleSize() const;
/// Return true if the MachineInstr reads the specified register.
/// If TargetRegisterInfo is passed, then it also checks if there
/// is a read of a super-register.
/// This does not count partial redefines of virtual registers as reads:
/// %reg1024:6 = OP.
bool readsRegister(unsigned Reg,
const TargetRegisterInfo *TRI = nullptr) const {
return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
}
/// Return true if the MachineInstr reads the specified virtual register.
/// Take into account that a partial define is a
/// read-modify-write operation.
bool readsVirtualRegister(unsigned Reg) const {
return readsWritesVirtualRegister(Reg).first;
}
/// Return a pair of bools (reads, writes) indicating if this instruction
/// reads or writes Reg. This also considers partial defines.
/// If Ops is not null, all operand indices for Reg are added.
std::pair<bool,bool> readsWritesVirtualRegister(unsigned Reg,
SmallVectorImpl<unsigned> *Ops = nullptr) const;
/// Return true if the MachineInstr kills the specified register.
/// If TargetRegisterInfo is passed, then it also checks if there is
/// a kill of a super-register.
bool killsRegister(unsigned Reg,
const TargetRegisterInfo *TRI = nullptr) const {
return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
}
/// Return true if the MachineInstr fully defines the specified register.
/// If TargetRegisterInfo is passed, then it also checks
/// if there is a def of a super-register.
/// NOTE: It's ignoring subreg indices on virtual registers.
bool definesRegister(unsigned Reg,
const TargetRegisterInfo *TRI = nullptr) const {
return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
}
/// Return true if the MachineInstr modifies (fully define or partially
/// define) the specified register.
/// NOTE: It's ignoring subreg indices on virtual registers.
bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const {
return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
}
/// Returns true if the register is dead in this machine instruction.
/// If TargetRegisterInfo is passed, then it also checks
/// if there is a dead def of a super-register.
bool registerDefIsDead(unsigned Reg,
const TargetRegisterInfo *TRI = nullptr) const {
return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
}
/// Returns true if the MachineInstr has an implicit-use operand of exactly
/// the given register (not considering sub/super-registers).
bool hasRegisterImplicitUseOperand(unsigned Reg) const;
/// Returns the operand index that is a use of the specific register or -1
/// if it is not found. It further tightens the search criteria to a use
/// that kills the register if isKill is true.
int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false,
const TargetRegisterInfo *TRI = nullptr) const;
/// Wrapper for findRegisterUseOperandIdx, it returns
/// a pointer to the MachineOperand rather than an index.
MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false,
const TargetRegisterInfo *TRI = nullptr) {
int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
return (Idx == -1) ? nullptr : &getOperand(Idx);
}
const MachineOperand *findRegisterUseOperand(
unsigned Reg, bool isKill = false,
const TargetRegisterInfo *TRI = nullptr) const {
return const_cast<MachineInstr *>(this)->
findRegisterUseOperand(Reg, isKill, TRI);
}
/// Returns the operand index that is a def of the specified register or
/// -1 if it is not found. If isDead is true, defs that are not dead are
/// skipped. If Overlap is true, then it also looks for defs that merely
/// overlap the specified register. If TargetRegisterInfo is non-null,
/// then it also checks if there is a def of a super-register.
/// This may also return a register mask operand when Overlap is true.
int findRegisterDefOperandIdx(unsigned Reg,
bool isDead = false, bool Overlap = false,
const TargetRegisterInfo *TRI = nullptr) const;
/// Wrapper for findRegisterDefOperandIdx, it returns
/// a pointer to the MachineOperand rather than an index.
MachineOperand *findRegisterDefOperand(unsigned Reg, bool isDead = false,
const TargetRegisterInfo *TRI = nullptr) {
int Idx = findRegisterDefOperandIdx(Reg, isDead, false, TRI);
return (Idx == -1) ? nullptr : &getOperand(Idx);
}
/// Find the index of the first operand in the
/// operand list that is used to represent the predicate. It returns -1 if
/// none is found.
int findFirstPredOperandIdx() const;
/// Find the index of the flag word operand that
/// corresponds to operand OpIdx on an inline asm instruction. Returns -1 if
/// getOperand(OpIdx) does not belong to an inline asm operand group.
///
/// If GroupNo is not NULL, it will receive the number of the operand group
/// containing OpIdx.
///
/// The flag operand is an immediate that can be decoded with methods like
/// InlineAsm::hasRegClassConstraint().
///
int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const;
/// Compute the static register class constraint for operand OpIdx.
/// For normal instructions, this is derived from the MCInstrDesc.
/// For inline assembly it is derived from the flag words.
///
/// Returns NULL if the static register class constraint cannot be
/// determined.
///
const TargetRegisterClass*
getRegClassConstraint(unsigned OpIdx,
const TargetInstrInfo *TII,
const TargetRegisterInfo *TRI) const;
/// \brief Applies the constraints (def/use) implied by this MI on \p Reg to
/// the given \p CurRC.
/// If \p ExploreBundle is set and MI is part of a bundle, all the
/// instructions inside the bundle will be taken into account. In other words,
/// this method accumulates all the constraints of the operand of this MI and
/// the related bundle if MI is a bundle or inside a bundle.
///
/// Returns the register class that satisfies both \p CurRC and the
/// constraints set by MI. Returns NULL if such a register class does not
/// exist.
///
/// \pre CurRC must not be NULL.
const TargetRegisterClass *getRegClassConstraintEffectForVReg(
unsigned Reg, const TargetRegisterClass *CurRC,
const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
bool ExploreBundle = false) const;
/// \brief Applies the constraints (def/use) implied by the \p OpIdx operand
/// to the given \p CurRC.
///
/// Returns the register class that satisfies both \p CurRC and the
/// constraints set by \p OpIdx MI. Returns NULL if such a register class
/// does not exist.
///
/// \pre CurRC must not be NULL.
/// \pre The operand at \p OpIdx must be a register.
const TargetRegisterClass *
getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC,
const TargetInstrInfo *TII,
const TargetRegisterInfo *TRI) const;
/// Add a tie between the register operands at DefIdx and UseIdx.
/// The tie will cause the register allocator to ensure that the two
/// operands are assigned the same physical register.
///
/// Tied operands are managed automatically for explicit operands in the
/// MCInstrDesc. This method is for exceptional cases like inline asm.
void tieOperands(unsigned DefIdx, unsigned UseIdx);
/// Given the index of a tied register operand, find the
/// operand it is tied to. Defs are tied to uses and vice versa. Returns the
/// index of the tied operand which must exist.
unsigned findTiedOperandIdx(unsigned OpIdx) const;
/// Given the index of a register def operand,
/// check if the register def is tied to a source operand, due to either
/// two-address elimination or inline assembly constraints. Returns the
/// first tied use operand index by reference if UseOpIdx is not null.
bool isRegTiedToUseOperand(unsigned DefOpIdx,
unsigned *UseOpIdx = nullptr) const {
const MachineOperand &MO = getOperand(DefOpIdx);
if (!MO.isReg() || !MO.isDef() || !MO.isTied())
return false;
if (UseOpIdx)
*UseOpIdx = findTiedOperandIdx(DefOpIdx);
return true;
}
/// Return true if the use operand of the specified index is tied to a def
/// operand. It also returns the def operand index by reference if DefOpIdx
/// is not null.
bool isRegTiedToDefOperand(unsigned UseOpIdx,
unsigned *DefOpIdx = nullptr) const {
const MachineOperand &MO = getOperand(UseOpIdx);
if (!MO.isReg() || !MO.isUse() || !MO.isTied())
return false;
if (DefOpIdx)
*DefOpIdx = findTiedOperandIdx(UseOpIdx);
return true;
}
/// Clears kill flags on all operands.
void clearKillInfo();
/// Replace all occurrences of FromReg with ToReg:SubIdx,
/// properly composing subreg indices where necessary.
void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx,
const TargetRegisterInfo &RegInfo);
/// We have determined MI kills a register. Look for the
/// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
/// add a implicit operand if it's not found. Returns true if the operand
/// exists / is added.
bool addRegisterKilled(unsigned IncomingReg,
const TargetRegisterInfo *RegInfo,
bool AddIfNotFound = false);
/// Clear all kill flags affecting Reg. If RegInfo is provided, this includes
/// all aliasing registers.
void clearRegisterKills(unsigned Reg, const TargetRegisterInfo *RegInfo);
/// We have determined MI defined a register without a use.
/// Look for the operand that defines it and mark it as IsDead. If
/// AddIfNotFound is true, add a implicit operand if it's not found. Returns
/// true if the operand exists / is added.
bool addRegisterDead(unsigned Reg, const TargetRegisterInfo *RegInfo,
bool AddIfNotFound = false);
/// Clear all dead flags on operands defining register @p Reg.
void clearRegisterDeads(unsigned Reg);
/// Mark all subregister defs of register @p Reg with the undef flag.
/// This function is used when we determined to have a subregister def in an
/// otherwise undefined super register.
void setRegisterDefReadUndef(unsigned Reg, bool IsUndef = true);
/// We have determined MI defines a register. Make sure there is an operand
/// defining Reg.
void addRegisterDefined(unsigned Reg,
const TargetRegisterInfo *RegInfo = nullptr);
/// Mark every physreg used by this instruction as
/// dead except those in the UsedRegs list.
///
/// On instructions with register mask operands, also add implicit-def
/// operands for all registers in UsedRegs.
void setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
const TargetRegisterInfo &TRI);
/// Return true if it is safe to move this instruction. If
/// SawStore is set to true, it means that there is a store (or call) between
/// the instruction's location and its intended destination.
bool isSafeToMove(AliasAnalysis *AA, bool &SawStore) const;
/// Return true if this instruction may have an ordered
/// or volatile memory reference, or if the information describing the memory
/// reference is not available. Return false if it is known to have no
/// ordered or volatile memory references.
bool hasOrderedMemoryRef() const;
/// Return true if this load instruction never traps and points to a memory
/// location whose value doesn't change during the execution of this function.
///
/// Examples include loading a value from the constant pool or from the
/// argument area of a function (if it does not change). If the instruction
/// does multiple loads, this returns true only if all of the loads are
/// dereferenceable and invariant.
bool isDereferenceableInvariantLoad(AliasAnalysis *AA) const;
/// If the specified instruction is a PHI that always merges together the
/// same virtual register, return the register, otherwise return 0.
unsigned isConstantValuePHI() const;
/// Return true if this instruction has side effects that are not modeled
/// by mayLoad / mayStore, etc.
/// For all instructions, the property is encoded in MCInstrDesc::Flags
/// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
/// INLINEASM instruction, in which case the side effect property is encoded
/// in one of its operands (see InlineAsm::Extra_HasSideEffect).
///
bool hasUnmodeledSideEffects() const;
/// Returns true if it is illegal to fold a load across this instruction.
bool isLoadFoldBarrier() const;
/// Return true if all the defs of this instruction are dead.
bool allDefsAreDead() const;
/// Copy implicit register operands from specified
/// instruction to this instruction.
void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI);
//
// Debugging support
//
void print(raw_ostream &OS, bool SkipOpers = false,
const TargetInstrInfo *TII = nullptr) const;
void print(raw_ostream &OS, ModuleSlotTracker &MST, bool SkipOpers = false,
const TargetInstrInfo *TII = nullptr) const;
void dump(const TargetInstrInfo *TII = nullptr) const;
//===--------------------------------------------------------------------===//
// Accessors used to build up machine instructions.
/// Add the specified operand to the instruction. If it is an implicit
/// operand, it is added to the end of the operand list. If it is an
/// explicit operand it is added at the end of the explicit operand list
/// (before the first implicit operand).
///
/// MF must be the machine function that was used to allocate this
/// instruction.
///
/// MachineInstrBuilder provides a more convenient interface for creating
/// instructions and adding operands.
void addOperand(MachineFunction &MF, const MachineOperand &Op);
/// Add an operand without providing an MF reference. This only works for
/// instructions that are inserted in a basic block.
///
/// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
/// preferred.
void addOperand(const MachineOperand &Op);
/// Replace the instruction descriptor (thus opcode) of
/// the current instruction with a new one.
void setDesc(const MCInstrDesc &tid) { MCID = &tid; }
/// Replace current source information with new such.
/// Avoid using this, the constructor argument is preferable.
void setDebugLoc(DebugLoc dl) {
debugLoc = std::move(dl);
assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
}
/// Erase an operand from an instruction, leaving it with one
/// fewer operand than it started with.
void RemoveOperand(unsigned i);
/// Add a MachineMemOperand to the machine instruction.
/// This function should be used only occasionally. The setMemRefs function
/// is the primary method for setting up a MachineInstr's MemRefs list.
void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
/// Assign this MachineInstr's memory reference descriptor list.
/// This does not transfer ownership.
void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
setMemRefs(std::make_pair(NewMemRefs, NewMemRefsEnd-NewMemRefs));
}
/// Assign this MachineInstr's memory reference descriptor list. First
/// element in the pair is the begin iterator/pointer to the array; the
/// second is the number of MemoryOperands. This does not transfer ownership
/// of the underlying memory.
void setMemRefs(std::pair<mmo_iterator, unsigned> NewMemRefs) {
MemRefs = NewMemRefs.first;
NumMemRefs = uint8_t(NewMemRefs.second);
assert(NumMemRefs == NewMemRefs.second &&
"Too many memrefs - must drop memory operands");
}
/// Return a set of memrefs (begin iterator, size) which conservatively
/// describe the memory behavior of both MachineInstrs. This is appropriate
/// for use when merging two MachineInstrs into one. This routine does not
/// modify the memrefs of the this MachineInstr.
std::pair<mmo_iterator, unsigned> mergeMemRefsWith(const MachineInstr& Other);
/// Clear this MachineInstr's memory reference descriptor list. This resets
/// the memrefs to their most conservative state. This should be used only
/// as a last resort since it greatly pessimizes our knowledge of the memory
/// access performed by the instruction.
void dropMemRefs() {
MemRefs = nullptr;
NumMemRefs = 0;
}
/// Break any tie involving OpIdx.
void untieRegOperand(unsigned OpIdx) {
MachineOperand &MO = getOperand(OpIdx);
if (MO.isReg() && MO.isTied()) {
getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
MO.TiedTo = 0;
}
}
/// Add all implicit def and use operands to this instruction.
void addImplicitDefUseOperands(MachineFunction &MF);
private:
/// If this instruction is embedded into a MachineFunction, return the
/// MachineRegisterInfo object for the current function, otherwise
/// return null.
MachineRegisterInfo *getRegInfo();
/// Unlink all of the register operands in this instruction from their
/// respective use lists. This requires that the operands already be on their
/// use lists.
void RemoveRegOperandsFromUseLists(MachineRegisterInfo&);
/// Add all of the register operands in this instruction from their
/// respective use lists. This requires that the operands not be on their
/// use lists yet.
void AddRegOperandsToUseLists(MachineRegisterInfo&);
/// Slow path for hasProperty when we're dealing with a bundle.
bool hasPropertyInBundle(unsigned Mask, QueryType Type) const;
/// \brief Implements the logic of getRegClassConstraintEffectForVReg for the
/// this MI and the given operand index \p OpIdx.
/// If the related operand does not constrained Reg, this returns CurRC.
const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl(
unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
};
/// Special DenseMapInfo traits to compare MachineInstr* by *value* of the
/// instruction rather than by pointer value.
/// The hashing and equality testing functions ignore definitions so this is
/// useful for CSE, etc.
struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
static inline MachineInstr *getEmptyKey() {
return nullptr;
}
static inline MachineInstr *getTombstoneKey() {
return reinterpret_cast<MachineInstr*>(-1);
}
static unsigned getHashValue(const MachineInstr* const &MI);
static bool isEqual(const MachineInstr* const &LHS,
const MachineInstr* const &RHS) {
if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
LHS == getEmptyKey() || LHS == getTombstoneKey())
return LHS == RHS;
return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs);
}
};
//===----------------------------------------------------------------------===//
// Debugging Support
inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
MI.print(OS);
return OS;
}
} // End llvm namespace
#endif
|