/usr/include/llvm-4.0/llvm/CodeGen/RegAllocPBQP.h is in llvm-4.0-dev 1:4.0.1-10.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 | //===-- RegAllocPBQP.h ------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the PBQPBuilder interface, for classes which build PBQP
// instances to represent register allocation problems, and the RegAllocPBQP
// interface.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_REGALLOCPBQP_H
#define LLVM_CODEGEN_REGALLOCPBQP_H
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/PBQP/CostAllocator.h"
#include "llvm/CodeGen/PBQP/ReductionRules.h"
#include "llvm/CodeGen/PBQPRAConstraint.h"
#include "llvm/Support/ErrorHandling.h"
#include <set>
namespace llvm {
class raw_ostream;
namespace PBQP {
namespace RegAlloc {
/// @brief Spill option index.
inline unsigned getSpillOptionIdx() { return 0; }
/// \brief Metadata to speed allocatability test.
///
/// Keeps track of the number of infinities in each row and column.
class MatrixMetadata {
private:
MatrixMetadata(const MatrixMetadata&);
void operator=(const MatrixMetadata&);
public:
MatrixMetadata(const Matrix& M)
: WorstRow(0), WorstCol(0),
UnsafeRows(new bool[M.getRows() - 1]()),
UnsafeCols(new bool[M.getCols() - 1]()) {
unsigned* ColCounts = new unsigned[M.getCols() - 1]();
for (unsigned i = 1; i < M.getRows(); ++i) {
unsigned RowCount = 0;
for (unsigned j = 1; j < M.getCols(); ++j) {
if (M[i][j] == std::numeric_limits<PBQPNum>::infinity()) {
++RowCount;
++ColCounts[j - 1];
UnsafeRows[i - 1] = true;
UnsafeCols[j - 1] = true;
}
}
WorstRow = std::max(WorstRow, RowCount);
}
unsigned WorstColCountForCurRow =
*std::max_element(ColCounts, ColCounts + M.getCols() - 1);
WorstCol = std::max(WorstCol, WorstColCountForCurRow);
delete[] ColCounts;
}
unsigned getWorstRow() const { return WorstRow; }
unsigned getWorstCol() const { return WorstCol; }
const bool* getUnsafeRows() const { return UnsafeRows.get(); }
const bool* getUnsafeCols() const { return UnsafeCols.get(); }
private:
unsigned WorstRow, WorstCol;
std::unique_ptr<bool[]> UnsafeRows;
std::unique_ptr<bool[]> UnsafeCols;
};
/// \brief Holds a vector of the allowed physical regs for a vreg.
class AllowedRegVector {
friend hash_code hash_value(const AllowedRegVector &);
public:
AllowedRegVector() : NumOpts(0), Opts(nullptr) {}
AllowedRegVector(const std::vector<unsigned> &OptVec)
: NumOpts(OptVec.size()), Opts(new unsigned[NumOpts]) {
std::copy(OptVec.begin(), OptVec.end(), Opts.get());
}
AllowedRegVector(AllowedRegVector &&) = default;
unsigned size() const { return NumOpts; }
unsigned operator[](size_t I) const { return Opts[I]; }
bool operator==(const AllowedRegVector &Other) const {
if (NumOpts != Other.NumOpts)
return false;
return std::equal(Opts.get(), Opts.get() + NumOpts, Other.Opts.get());
}
bool operator!=(const AllowedRegVector &Other) const {
return !(*this == Other);
}
private:
unsigned NumOpts;
std::unique_ptr<unsigned[]> Opts;
};
inline hash_code hash_value(const AllowedRegVector &OptRegs) {
unsigned *OStart = OptRegs.Opts.get();
unsigned *OEnd = OptRegs.Opts.get() + OptRegs.NumOpts;
return hash_combine(OptRegs.NumOpts,
hash_combine_range(OStart, OEnd));
}
/// \brief Holds graph-level metadata relevant to PBQP RA problems.
class GraphMetadata {
private:
typedef ValuePool<AllowedRegVector> AllowedRegVecPool;
public:
typedef AllowedRegVecPool::PoolRef AllowedRegVecRef;
GraphMetadata(MachineFunction &MF,
LiveIntervals &LIS,
MachineBlockFrequencyInfo &MBFI)
: MF(MF), LIS(LIS), MBFI(MBFI) {}
MachineFunction &MF;
LiveIntervals &LIS;
MachineBlockFrequencyInfo &MBFI;
void setNodeIdForVReg(unsigned VReg, GraphBase::NodeId NId) {
VRegToNodeId[VReg] = NId;
}
GraphBase::NodeId getNodeIdForVReg(unsigned VReg) const {
auto VRegItr = VRegToNodeId.find(VReg);
if (VRegItr == VRegToNodeId.end())
return GraphBase::invalidNodeId();
return VRegItr->second;
}
AllowedRegVecRef getAllowedRegs(AllowedRegVector Allowed) {
return AllowedRegVecs.getValue(std::move(Allowed));
}
private:
DenseMap<unsigned, GraphBase::NodeId> VRegToNodeId;
AllowedRegVecPool AllowedRegVecs;
};
/// \brief Holds solver state and other metadata relevant to each PBQP RA node.
class NodeMetadata {
public:
typedef RegAlloc::AllowedRegVector AllowedRegVector;
// The node's reduction state. The order in this enum is important,
// as it is assumed nodes can only progress up (i.e. towards being
// optimally reducible) when reducing the graph.
typedef enum {
Unprocessed,
NotProvablyAllocatable,
ConservativelyAllocatable,
OptimallyReducible
} ReductionState;
NodeMetadata()
: RS(Unprocessed), NumOpts(0), DeniedOpts(0), OptUnsafeEdges(nullptr),
VReg(0)
#ifndef NDEBUG
, everConservativelyAllocatable(false)
#endif
{}
NodeMetadata(const NodeMetadata &Other)
: RS(Other.RS), NumOpts(Other.NumOpts), DeniedOpts(Other.DeniedOpts),
OptUnsafeEdges(new unsigned[NumOpts]), VReg(Other.VReg),
AllowedRegs(Other.AllowedRegs)
#ifndef NDEBUG
, everConservativelyAllocatable(Other.everConservativelyAllocatable)
#endif
{
if (NumOpts > 0) {
std::copy(&Other.OptUnsafeEdges[0], &Other.OptUnsafeEdges[NumOpts],
&OptUnsafeEdges[0]);
}
}
NodeMetadata(NodeMetadata &&Other) = default;
NodeMetadata& operator=(NodeMetadata &&Other) = default;
void setVReg(unsigned VReg) { this->VReg = VReg; }
unsigned getVReg() const { return VReg; }
void setAllowedRegs(GraphMetadata::AllowedRegVecRef AllowedRegs) {
this->AllowedRegs = std::move(AllowedRegs);
}
const AllowedRegVector& getAllowedRegs() const { return *AllowedRegs; }
void setup(const Vector& Costs) {
NumOpts = Costs.getLength() - 1;
OptUnsafeEdges = std::unique_ptr<unsigned[]>(new unsigned[NumOpts]());
}
ReductionState getReductionState() const { return RS; }
void setReductionState(ReductionState RS) {
assert(RS >= this->RS && "A node's reduction state can not be downgraded");
this->RS = RS;
#ifndef NDEBUG
// Remember this state to assert later that a non-infinite register
// option was available.
if (RS == ConservativelyAllocatable)
everConservativelyAllocatable = true;
#endif
}
void handleAddEdge(const MatrixMetadata& MD, bool Transpose) {
DeniedOpts += Transpose ? MD.getWorstRow() : MD.getWorstCol();
const bool* UnsafeOpts =
Transpose ? MD.getUnsafeCols() : MD.getUnsafeRows();
for (unsigned i = 0; i < NumOpts; ++i)
OptUnsafeEdges[i] += UnsafeOpts[i];
}
void handleRemoveEdge(const MatrixMetadata& MD, bool Transpose) {
DeniedOpts -= Transpose ? MD.getWorstRow() : MD.getWorstCol();
const bool* UnsafeOpts =
Transpose ? MD.getUnsafeCols() : MD.getUnsafeRows();
for (unsigned i = 0; i < NumOpts; ++i)
OptUnsafeEdges[i] -= UnsafeOpts[i];
}
bool isConservativelyAllocatable() const {
return (DeniedOpts < NumOpts) ||
(std::find(&OptUnsafeEdges[0], &OptUnsafeEdges[NumOpts], 0) !=
&OptUnsafeEdges[NumOpts]);
}
#ifndef NDEBUG
bool wasConservativelyAllocatable() const {
return everConservativelyAllocatable;
}
#endif
private:
ReductionState RS;
unsigned NumOpts;
unsigned DeniedOpts;
std::unique_ptr<unsigned[]> OptUnsafeEdges;
unsigned VReg;
GraphMetadata::AllowedRegVecRef AllowedRegs;
#ifndef NDEBUG
bool everConservativelyAllocatable;
#endif
};
class RegAllocSolverImpl {
private:
typedef MDMatrix<MatrixMetadata> RAMatrix;
public:
typedef PBQP::Vector RawVector;
typedef PBQP::Matrix RawMatrix;
typedef PBQP::Vector Vector;
typedef RAMatrix Matrix;
typedef PBQP::PoolCostAllocator<Vector, Matrix> CostAllocator;
typedef GraphBase::NodeId NodeId;
typedef GraphBase::EdgeId EdgeId;
typedef RegAlloc::NodeMetadata NodeMetadata;
struct EdgeMetadata { };
typedef RegAlloc::GraphMetadata GraphMetadata;
typedef PBQP::Graph<RegAllocSolverImpl> Graph;
RegAllocSolverImpl(Graph &G) : G(G) {}
Solution solve() {
G.setSolver(*this);
Solution S;
setup();
S = backpropagate(G, reduce());
G.unsetSolver();
return S;
}
void handleAddNode(NodeId NId) {
assert(G.getNodeCosts(NId).getLength() > 1 &&
"PBQP Graph should not contain single or zero-option nodes");
G.getNodeMetadata(NId).setup(G.getNodeCosts(NId));
}
void handleRemoveNode(NodeId NId) {}
void handleSetNodeCosts(NodeId NId, const Vector& newCosts) {}
void handleAddEdge(EdgeId EId) {
handleReconnectEdge(EId, G.getEdgeNode1Id(EId));
handleReconnectEdge(EId, G.getEdgeNode2Id(EId));
}
void handleDisconnectEdge(EdgeId EId, NodeId NId) {
NodeMetadata& NMd = G.getNodeMetadata(NId);
const MatrixMetadata& MMd = G.getEdgeCosts(EId).getMetadata();
NMd.handleRemoveEdge(MMd, NId == G.getEdgeNode2Id(EId));
promote(NId, NMd);
}
void handleReconnectEdge(EdgeId EId, NodeId NId) {
NodeMetadata& NMd = G.getNodeMetadata(NId);
const MatrixMetadata& MMd = G.getEdgeCosts(EId).getMetadata();
NMd.handleAddEdge(MMd, NId == G.getEdgeNode2Id(EId));
}
void handleUpdateCosts(EdgeId EId, const Matrix& NewCosts) {
NodeId N1Id = G.getEdgeNode1Id(EId);
NodeId N2Id = G.getEdgeNode2Id(EId);
NodeMetadata& N1Md = G.getNodeMetadata(N1Id);
NodeMetadata& N2Md = G.getNodeMetadata(N2Id);
bool Transpose = N1Id != G.getEdgeNode1Id(EId);
// Metadata are computed incrementally. First, update them
// by removing the old cost.
const MatrixMetadata& OldMMd = G.getEdgeCosts(EId).getMetadata();
N1Md.handleRemoveEdge(OldMMd, Transpose);
N2Md.handleRemoveEdge(OldMMd, !Transpose);
// And update now the metadata with the new cost.
const MatrixMetadata& MMd = NewCosts.getMetadata();
N1Md.handleAddEdge(MMd, Transpose);
N2Md.handleAddEdge(MMd, !Transpose);
// As the metadata may have changed with the update, the nodes may have
// become ConservativelyAllocatable or OptimallyReducible.
promote(N1Id, N1Md);
promote(N2Id, N2Md);
}
private:
void promote(NodeId NId, NodeMetadata& NMd) {
if (G.getNodeDegree(NId) == 3) {
// This node is becoming optimally reducible.
moveToOptimallyReducibleNodes(NId);
} else if (NMd.getReductionState() ==
NodeMetadata::NotProvablyAllocatable &&
NMd.isConservativelyAllocatable()) {
// This node just became conservatively allocatable.
moveToConservativelyAllocatableNodes(NId);
}
}
void removeFromCurrentSet(NodeId NId) {
switch (G.getNodeMetadata(NId).getReductionState()) {
case NodeMetadata::Unprocessed: break;
case NodeMetadata::OptimallyReducible:
assert(OptimallyReducibleNodes.find(NId) !=
OptimallyReducibleNodes.end() &&
"Node not in optimally reducible set.");
OptimallyReducibleNodes.erase(NId);
break;
case NodeMetadata::ConservativelyAllocatable:
assert(ConservativelyAllocatableNodes.find(NId) !=
ConservativelyAllocatableNodes.end() &&
"Node not in conservatively allocatable set.");
ConservativelyAllocatableNodes.erase(NId);
break;
case NodeMetadata::NotProvablyAllocatable:
assert(NotProvablyAllocatableNodes.find(NId) !=
NotProvablyAllocatableNodes.end() &&
"Node not in not-provably-allocatable set.");
NotProvablyAllocatableNodes.erase(NId);
break;
}
}
void moveToOptimallyReducibleNodes(NodeId NId) {
removeFromCurrentSet(NId);
OptimallyReducibleNodes.insert(NId);
G.getNodeMetadata(NId).setReductionState(
NodeMetadata::OptimallyReducible);
}
void moveToConservativelyAllocatableNodes(NodeId NId) {
removeFromCurrentSet(NId);
ConservativelyAllocatableNodes.insert(NId);
G.getNodeMetadata(NId).setReductionState(
NodeMetadata::ConservativelyAllocatable);
}
void moveToNotProvablyAllocatableNodes(NodeId NId) {
removeFromCurrentSet(NId);
NotProvablyAllocatableNodes.insert(NId);
G.getNodeMetadata(NId).setReductionState(
NodeMetadata::NotProvablyAllocatable);
}
void setup() {
// Set up worklists.
for (auto NId : G.nodeIds()) {
if (G.getNodeDegree(NId) < 3)
moveToOptimallyReducibleNodes(NId);
else if (G.getNodeMetadata(NId).isConservativelyAllocatable())
moveToConservativelyAllocatableNodes(NId);
else
moveToNotProvablyAllocatableNodes(NId);
}
}
// Compute a reduction order for the graph by iteratively applying PBQP
// reduction rules. Locally optimal rules are applied whenever possible (R0,
// R1, R2). If no locally-optimal rules apply then any conservatively
// allocatable node is reduced. Finally, if no conservatively allocatable
// node exists then the node with the lowest spill-cost:degree ratio is
// selected.
std::vector<GraphBase::NodeId> reduce() {
assert(!G.empty() && "Cannot reduce empty graph.");
typedef GraphBase::NodeId NodeId;
std::vector<NodeId> NodeStack;
// Consume worklists.
while (true) {
if (!OptimallyReducibleNodes.empty()) {
NodeSet::iterator NItr = OptimallyReducibleNodes.begin();
NodeId NId = *NItr;
OptimallyReducibleNodes.erase(NItr);
NodeStack.push_back(NId);
switch (G.getNodeDegree(NId)) {
case 0:
break;
case 1:
applyR1(G, NId);
break;
case 2:
applyR2(G, NId);
break;
default: llvm_unreachable("Not an optimally reducible node.");
}
} else if (!ConservativelyAllocatableNodes.empty()) {
// Conservatively allocatable nodes will never spill. For now just
// take the first node in the set and push it on the stack. When we
// start optimizing more heavily for register preferencing, it may
// would be better to push nodes with lower 'expected' or worst-case
// register costs first (since early nodes are the most
// constrained).
NodeSet::iterator NItr = ConservativelyAllocatableNodes.begin();
NodeId NId = *NItr;
ConservativelyAllocatableNodes.erase(NItr);
NodeStack.push_back(NId);
G.disconnectAllNeighborsFromNode(NId);
} else if (!NotProvablyAllocatableNodes.empty()) {
NodeSet::iterator NItr =
std::min_element(NotProvablyAllocatableNodes.begin(),
NotProvablyAllocatableNodes.end(),
SpillCostComparator(G));
NodeId NId = *NItr;
NotProvablyAllocatableNodes.erase(NItr);
NodeStack.push_back(NId);
G.disconnectAllNeighborsFromNode(NId);
} else
break;
}
return NodeStack;
}
class SpillCostComparator {
public:
SpillCostComparator(const Graph& G) : G(G) {}
bool operator()(NodeId N1Id, NodeId N2Id) {
PBQPNum N1SC = G.getNodeCosts(N1Id)[0];
PBQPNum N2SC = G.getNodeCosts(N2Id)[0];
if (N1SC == N2SC)
return G.getNodeDegree(N1Id) < G.getNodeDegree(N2Id);
return N1SC < N2SC;
}
private:
const Graph& G;
};
Graph& G;
typedef std::set<NodeId> NodeSet;
NodeSet OptimallyReducibleNodes;
NodeSet ConservativelyAllocatableNodes;
NodeSet NotProvablyAllocatableNodes;
};
class PBQPRAGraph : public PBQP::Graph<RegAllocSolverImpl> {
private:
typedef PBQP::Graph<RegAllocSolverImpl> BaseT;
public:
PBQPRAGraph(GraphMetadata Metadata) : BaseT(Metadata) {}
/// @brief Dump this graph to dbgs().
void dump() const;
/// @brief Dump this graph to an output stream.
/// @param OS Output stream to print on.
void dump(raw_ostream &OS) const;
/// @brief Print a representation of this graph in DOT format.
/// @param OS Output stream to print on.
void printDot(raw_ostream &OS) const;
};
inline Solution solve(PBQPRAGraph& G) {
if (G.empty())
return Solution();
RegAllocSolverImpl RegAllocSolver(G);
return RegAllocSolver.solve();
}
} // namespace RegAlloc
} // namespace PBQP
/// @brief Create a PBQP register allocator instance.
FunctionPass *
createPBQPRegisterAllocator(char *customPassID = nullptr);
} // namespace llvm
#endif /* LLVM_CODEGEN_REGALLOCPBQP_H */
|