This file is indexed.

/usr/include/llvm-4.0/llvm/CodeGen/RegAllocPBQP.h is in llvm-4.0-dev 1:4.0.1-10.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
//===-- RegAllocPBQP.h ------------------------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the PBQPBuilder interface, for classes which build PBQP
// instances to represent register allocation problems, and the RegAllocPBQP
// interface.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CODEGEN_REGALLOCPBQP_H
#define LLVM_CODEGEN_REGALLOCPBQP_H

#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/PBQP/CostAllocator.h"
#include "llvm/CodeGen/PBQP/ReductionRules.h"
#include "llvm/CodeGen/PBQPRAConstraint.h"
#include "llvm/Support/ErrorHandling.h"
#include <set>

namespace llvm {

class raw_ostream;

namespace PBQP {
namespace RegAlloc {

/// @brief Spill option index.
inline unsigned getSpillOptionIdx() { return 0; }

/// \brief Metadata to speed allocatability test.
///
/// Keeps track of the number of infinities in each row and column.
class MatrixMetadata {
private:
  MatrixMetadata(const MatrixMetadata&);
  void operator=(const MatrixMetadata&);
public:
  MatrixMetadata(const Matrix& M)
    : WorstRow(0), WorstCol(0),
      UnsafeRows(new bool[M.getRows() - 1]()),
      UnsafeCols(new bool[M.getCols() - 1]()) {

    unsigned* ColCounts = new unsigned[M.getCols() - 1]();

    for (unsigned i = 1; i < M.getRows(); ++i) {
      unsigned RowCount = 0;
      for (unsigned j = 1; j < M.getCols(); ++j) {
        if (M[i][j] == std::numeric_limits<PBQPNum>::infinity()) {
          ++RowCount;
          ++ColCounts[j - 1];
          UnsafeRows[i - 1] = true;
          UnsafeCols[j - 1] = true;
        }
      }
      WorstRow = std::max(WorstRow, RowCount);
    }
    unsigned WorstColCountForCurRow =
      *std::max_element(ColCounts, ColCounts + M.getCols() - 1);
    WorstCol = std::max(WorstCol, WorstColCountForCurRow);
    delete[] ColCounts;
  }

  unsigned getWorstRow() const { return WorstRow; }
  unsigned getWorstCol() const { return WorstCol; }
  const bool* getUnsafeRows() const { return UnsafeRows.get(); }
  const bool* getUnsafeCols() const { return UnsafeCols.get(); }

private:
  unsigned WorstRow, WorstCol;
  std::unique_ptr<bool[]> UnsafeRows;
  std::unique_ptr<bool[]> UnsafeCols;
};

/// \brief Holds a vector of the allowed physical regs for a vreg.
class AllowedRegVector {
  friend hash_code hash_value(const AllowedRegVector &);
public:

  AllowedRegVector() : NumOpts(0), Opts(nullptr) {}

  AllowedRegVector(const std::vector<unsigned> &OptVec)
    : NumOpts(OptVec.size()), Opts(new unsigned[NumOpts]) {
    std::copy(OptVec.begin(), OptVec.end(), Opts.get());
  }

  AllowedRegVector(AllowedRegVector &&) = default;

  unsigned size() const { return NumOpts; }
  unsigned operator[](size_t I) const { return Opts[I]; }

  bool operator==(const AllowedRegVector &Other) const {
    if (NumOpts != Other.NumOpts)
      return false;
    return std::equal(Opts.get(), Opts.get() + NumOpts, Other.Opts.get());
  }

  bool operator!=(const AllowedRegVector &Other) const {
    return !(*this == Other);
  }

private:
  unsigned NumOpts;
  std::unique_ptr<unsigned[]> Opts;
};

inline hash_code hash_value(const AllowedRegVector &OptRegs) {
  unsigned *OStart = OptRegs.Opts.get();
  unsigned *OEnd = OptRegs.Opts.get() + OptRegs.NumOpts;
  return hash_combine(OptRegs.NumOpts,
                      hash_combine_range(OStart, OEnd));
}

/// \brief Holds graph-level metadata relevant to PBQP RA problems.
class GraphMetadata {
private:
  typedef ValuePool<AllowedRegVector> AllowedRegVecPool;
public:

  typedef AllowedRegVecPool::PoolRef AllowedRegVecRef;

  GraphMetadata(MachineFunction &MF,
                LiveIntervals &LIS,
                MachineBlockFrequencyInfo &MBFI)
    : MF(MF), LIS(LIS), MBFI(MBFI) {}

  MachineFunction &MF;
  LiveIntervals &LIS;
  MachineBlockFrequencyInfo &MBFI;

  void setNodeIdForVReg(unsigned VReg, GraphBase::NodeId NId) {
    VRegToNodeId[VReg] = NId;
  }

  GraphBase::NodeId getNodeIdForVReg(unsigned VReg) const {
    auto VRegItr = VRegToNodeId.find(VReg);
    if (VRegItr == VRegToNodeId.end())
      return GraphBase::invalidNodeId();
    return VRegItr->second;
  }

  AllowedRegVecRef getAllowedRegs(AllowedRegVector Allowed) {
    return AllowedRegVecs.getValue(std::move(Allowed));
  }

private:
  DenseMap<unsigned, GraphBase::NodeId> VRegToNodeId;
  AllowedRegVecPool AllowedRegVecs;
};

/// \brief Holds solver state and other metadata relevant to each PBQP RA node.
class NodeMetadata {
public:
  typedef RegAlloc::AllowedRegVector AllowedRegVector;

  // The node's reduction state. The order in this enum is important,
  // as it is assumed nodes can only progress up (i.e. towards being
  // optimally reducible) when reducing the graph.
  typedef enum {
    Unprocessed,
    NotProvablyAllocatable,
    ConservativelyAllocatable,
    OptimallyReducible
  } ReductionState;

  NodeMetadata()
    : RS(Unprocessed), NumOpts(0), DeniedOpts(0), OptUnsafeEdges(nullptr),
      VReg(0)
#ifndef NDEBUG
      , everConservativelyAllocatable(false)
#endif
      {}

  NodeMetadata(const NodeMetadata &Other)
    : RS(Other.RS), NumOpts(Other.NumOpts), DeniedOpts(Other.DeniedOpts),
      OptUnsafeEdges(new unsigned[NumOpts]), VReg(Other.VReg),
      AllowedRegs(Other.AllowedRegs)
#ifndef NDEBUG
      , everConservativelyAllocatable(Other.everConservativelyAllocatable)
#endif
  {
    if (NumOpts > 0) {
      std::copy(&Other.OptUnsafeEdges[0], &Other.OptUnsafeEdges[NumOpts],
                &OptUnsafeEdges[0]);
    }
  }

  NodeMetadata(NodeMetadata &&Other) = default;

  NodeMetadata& operator=(NodeMetadata &&Other) = default;

  void setVReg(unsigned VReg) { this->VReg = VReg; }
  unsigned getVReg() const { return VReg; }

  void setAllowedRegs(GraphMetadata::AllowedRegVecRef AllowedRegs) {
    this->AllowedRegs = std::move(AllowedRegs);
  }
  const AllowedRegVector& getAllowedRegs() const { return *AllowedRegs; }

  void setup(const Vector& Costs) {
    NumOpts = Costs.getLength() - 1;
    OptUnsafeEdges = std::unique_ptr<unsigned[]>(new unsigned[NumOpts]());
  }

  ReductionState getReductionState() const { return RS; }
  void setReductionState(ReductionState RS) {
    assert(RS >= this->RS && "A node's reduction state can not be downgraded");
    this->RS = RS;

#ifndef NDEBUG
    // Remember this state to assert later that a non-infinite register
    // option was available.
    if (RS == ConservativelyAllocatable)
      everConservativelyAllocatable = true;
#endif
  }

  void handleAddEdge(const MatrixMetadata& MD, bool Transpose) {
    DeniedOpts += Transpose ? MD.getWorstRow() : MD.getWorstCol();
    const bool* UnsafeOpts =
      Transpose ? MD.getUnsafeCols() : MD.getUnsafeRows();
    for (unsigned i = 0; i < NumOpts; ++i)
      OptUnsafeEdges[i] += UnsafeOpts[i];
  }

  void handleRemoveEdge(const MatrixMetadata& MD, bool Transpose) {
    DeniedOpts -= Transpose ? MD.getWorstRow() : MD.getWorstCol();
    const bool* UnsafeOpts =
      Transpose ? MD.getUnsafeCols() : MD.getUnsafeRows();
    for (unsigned i = 0; i < NumOpts; ++i)
      OptUnsafeEdges[i] -= UnsafeOpts[i];
  }

  bool isConservativelyAllocatable() const {
    return (DeniedOpts < NumOpts) ||
      (std::find(&OptUnsafeEdges[0], &OptUnsafeEdges[NumOpts], 0) !=
       &OptUnsafeEdges[NumOpts]);
  }

#ifndef NDEBUG
  bool wasConservativelyAllocatable() const {
    return everConservativelyAllocatable;
  }
#endif

private:
  ReductionState RS;
  unsigned NumOpts;
  unsigned DeniedOpts;
  std::unique_ptr<unsigned[]> OptUnsafeEdges;
  unsigned VReg;
  GraphMetadata::AllowedRegVecRef AllowedRegs;

#ifndef NDEBUG
  bool everConservativelyAllocatable;
#endif
};

class RegAllocSolverImpl {
private:
  typedef MDMatrix<MatrixMetadata> RAMatrix;
public:
  typedef PBQP::Vector RawVector;
  typedef PBQP::Matrix RawMatrix;
  typedef PBQP::Vector Vector;
  typedef RAMatrix     Matrix;
  typedef PBQP::PoolCostAllocator<Vector, Matrix> CostAllocator;

  typedef GraphBase::NodeId NodeId;
  typedef GraphBase::EdgeId EdgeId;

  typedef RegAlloc::NodeMetadata NodeMetadata;
  struct EdgeMetadata { };
  typedef RegAlloc::GraphMetadata GraphMetadata;

  typedef PBQP::Graph<RegAllocSolverImpl> Graph;

  RegAllocSolverImpl(Graph &G) : G(G) {}

  Solution solve() {
    G.setSolver(*this);
    Solution S;
    setup();
    S = backpropagate(G, reduce());
    G.unsetSolver();
    return S;
  }

  void handleAddNode(NodeId NId) {
    assert(G.getNodeCosts(NId).getLength() > 1 &&
           "PBQP Graph should not contain single or zero-option nodes");
    G.getNodeMetadata(NId).setup(G.getNodeCosts(NId));
  }
  void handleRemoveNode(NodeId NId) {}
  void handleSetNodeCosts(NodeId NId, const Vector& newCosts) {}

  void handleAddEdge(EdgeId EId) {
    handleReconnectEdge(EId, G.getEdgeNode1Id(EId));
    handleReconnectEdge(EId, G.getEdgeNode2Id(EId));
  }

  void handleDisconnectEdge(EdgeId EId, NodeId NId) {
    NodeMetadata& NMd = G.getNodeMetadata(NId);
    const MatrixMetadata& MMd = G.getEdgeCosts(EId).getMetadata();
    NMd.handleRemoveEdge(MMd, NId == G.getEdgeNode2Id(EId));
    promote(NId, NMd);
  }

  void handleReconnectEdge(EdgeId EId, NodeId NId) {
    NodeMetadata& NMd = G.getNodeMetadata(NId);
    const MatrixMetadata& MMd = G.getEdgeCosts(EId).getMetadata();
    NMd.handleAddEdge(MMd, NId == G.getEdgeNode2Id(EId));
  }

  void handleUpdateCosts(EdgeId EId, const Matrix& NewCosts) {
    NodeId N1Id = G.getEdgeNode1Id(EId);
    NodeId N2Id = G.getEdgeNode2Id(EId);
    NodeMetadata& N1Md = G.getNodeMetadata(N1Id);
    NodeMetadata& N2Md = G.getNodeMetadata(N2Id);
    bool Transpose = N1Id != G.getEdgeNode1Id(EId);

    // Metadata are computed incrementally. First, update them
    // by removing the old cost.
    const MatrixMetadata& OldMMd = G.getEdgeCosts(EId).getMetadata();
    N1Md.handleRemoveEdge(OldMMd, Transpose);
    N2Md.handleRemoveEdge(OldMMd, !Transpose);

    // And update now the metadata with the new cost.
    const MatrixMetadata& MMd = NewCosts.getMetadata();
    N1Md.handleAddEdge(MMd, Transpose);
    N2Md.handleAddEdge(MMd, !Transpose);

    // As the metadata may have changed with the update, the nodes may have
    // become ConservativelyAllocatable or OptimallyReducible.
    promote(N1Id, N1Md);
    promote(N2Id, N2Md);
  }

private:

  void promote(NodeId NId, NodeMetadata& NMd) {
    if (G.getNodeDegree(NId) == 3) {
      // This node is becoming optimally reducible.
      moveToOptimallyReducibleNodes(NId);
    } else if (NMd.getReductionState() ==
               NodeMetadata::NotProvablyAllocatable &&
               NMd.isConservativelyAllocatable()) {
      // This node just became conservatively allocatable.
      moveToConservativelyAllocatableNodes(NId);
    }
  }

  void removeFromCurrentSet(NodeId NId) {
    switch (G.getNodeMetadata(NId).getReductionState()) {
    case NodeMetadata::Unprocessed: break;
    case NodeMetadata::OptimallyReducible:
      assert(OptimallyReducibleNodes.find(NId) !=
             OptimallyReducibleNodes.end() &&
             "Node not in optimally reducible set.");
      OptimallyReducibleNodes.erase(NId);
      break;
    case NodeMetadata::ConservativelyAllocatable:
      assert(ConservativelyAllocatableNodes.find(NId) !=
             ConservativelyAllocatableNodes.end() &&
             "Node not in conservatively allocatable set.");
      ConservativelyAllocatableNodes.erase(NId);
      break;
    case NodeMetadata::NotProvablyAllocatable:
      assert(NotProvablyAllocatableNodes.find(NId) !=
             NotProvablyAllocatableNodes.end() &&
             "Node not in not-provably-allocatable set.");
      NotProvablyAllocatableNodes.erase(NId);
      break;
    }
  }

  void moveToOptimallyReducibleNodes(NodeId NId) {
    removeFromCurrentSet(NId);
    OptimallyReducibleNodes.insert(NId);
    G.getNodeMetadata(NId).setReductionState(
      NodeMetadata::OptimallyReducible);
  }

  void moveToConservativelyAllocatableNodes(NodeId NId) {
    removeFromCurrentSet(NId);
    ConservativelyAllocatableNodes.insert(NId);
    G.getNodeMetadata(NId).setReductionState(
      NodeMetadata::ConservativelyAllocatable);
  }

  void moveToNotProvablyAllocatableNodes(NodeId NId) {
    removeFromCurrentSet(NId);
    NotProvablyAllocatableNodes.insert(NId);
    G.getNodeMetadata(NId).setReductionState(
      NodeMetadata::NotProvablyAllocatable);
  }

  void setup() {
    // Set up worklists.
    for (auto NId : G.nodeIds()) {
      if (G.getNodeDegree(NId) < 3)
        moveToOptimallyReducibleNodes(NId);
      else if (G.getNodeMetadata(NId).isConservativelyAllocatable())
        moveToConservativelyAllocatableNodes(NId);
      else
        moveToNotProvablyAllocatableNodes(NId);
    }
  }

  // Compute a reduction order for the graph by iteratively applying PBQP
  // reduction rules. Locally optimal rules are applied whenever possible (R0,
  // R1, R2). If no locally-optimal rules apply then any conservatively
  // allocatable node is reduced. Finally, if no conservatively allocatable
  // node exists then the node with the lowest spill-cost:degree ratio is
  // selected.
  std::vector<GraphBase::NodeId> reduce() {
    assert(!G.empty() && "Cannot reduce empty graph.");

    typedef GraphBase::NodeId NodeId;
    std::vector<NodeId> NodeStack;

    // Consume worklists.
    while (true) {
      if (!OptimallyReducibleNodes.empty()) {
        NodeSet::iterator NItr = OptimallyReducibleNodes.begin();
        NodeId NId = *NItr;
        OptimallyReducibleNodes.erase(NItr);
        NodeStack.push_back(NId);
        switch (G.getNodeDegree(NId)) {
        case 0:
          break;
        case 1:
          applyR1(G, NId);
          break;
        case 2:
          applyR2(G, NId);
          break;
        default: llvm_unreachable("Not an optimally reducible node.");
        }
      } else if (!ConservativelyAllocatableNodes.empty()) {
        // Conservatively allocatable nodes will never spill. For now just
        // take the first node in the set and push it on the stack. When we
        // start optimizing more heavily for register preferencing, it may
        // would be better to push nodes with lower 'expected' or worst-case
        // register costs first (since early nodes are the most
        // constrained).
        NodeSet::iterator NItr = ConservativelyAllocatableNodes.begin();
        NodeId NId = *NItr;
        ConservativelyAllocatableNodes.erase(NItr);
        NodeStack.push_back(NId);
        G.disconnectAllNeighborsFromNode(NId);

      } else if (!NotProvablyAllocatableNodes.empty()) {
        NodeSet::iterator NItr =
          std::min_element(NotProvablyAllocatableNodes.begin(),
                           NotProvablyAllocatableNodes.end(),
                           SpillCostComparator(G));
        NodeId NId = *NItr;
        NotProvablyAllocatableNodes.erase(NItr);
        NodeStack.push_back(NId);
        G.disconnectAllNeighborsFromNode(NId);
      } else
        break;
    }

    return NodeStack;
  }

  class SpillCostComparator {
  public:
    SpillCostComparator(const Graph& G) : G(G) {}
    bool operator()(NodeId N1Id, NodeId N2Id) {
      PBQPNum N1SC = G.getNodeCosts(N1Id)[0];
      PBQPNum N2SC = G.getNodeCosts(N2Id)[0];
      if (N1SC == N2SC)
        return G.getNodeDegree(N1Id) < G.getNodeDegree(N2Id);
      return N1SC < N2SC;
    }
  private:
    const Graph& G;
  };

  Graph& G;
  typedef std::set<NodeId> NodeSet;
  NodeSet OptimallyReducibleNodes;
  NodeSet ConservativelyAllocatableNodes;
  NodeSet NotProvablyAllocatableNodes;
};

class PBQPRAGraph : public PBQP::Graph<RegAllocSolverImpl> {
private:
  typedef PBQP::Graph<RegAllocSolverImpl> BaseT;
public:
  PBQPRAGraph(GraphMetadata Metadata) : BaseT(Metadata) {}

  /// @brief Dump this graph to dbgs().
  void dump() const;

  /// @brief Dump this graph to an output stream.
  /// @param OS Output stream to print on.
  void dump(raw_ostream &OS) const;

  /// @brief Print a representation of this graph in DOT format.
  /// @param OS Output stream to print on.
  void printDot(raw_ostream &OS) const;
};

inline Solution solve(PBQPRAGraph& G) {
  if (G.empty())
    return Solution();
  RegAllocSolverImpl RegAllocSolver(G);
  return RegAllocSolver.solve();
}

} // namespace RegAlloc
} // namespace PBQP

/// @brief Create a PBQP register allocator instance.
FunctionPass *
createPBQPRegisterAllocator(char *customPassID = nullptr);

} // namespace llvm

#endif /* LLVM_CODEGEN_REGALLOCPBQP_H */