/usr/include/llvm-4.0/llvm/CodeGen/SelectionDAG.h is in llvm-4.0-dev 1:4.0.1-10.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 | //===-- llvm/CodeGen/SelectionDAG.h - InstSelection DAG ---------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the SelectionDAG class, and transitively defines the
// SDNode class and subclasses.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_SELECTIONDAG_H
#define LLVM_CODEGEN_SELECTIONDAG_H
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/ilist.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/DAGCombine.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/Support/ArrayRecycler.h"
#include "llvm/Support/RecyclingAllocator.h"
#include "llvm/Target/TargetMachine.h"
#include <cassert>
#include <map>
#include <string>
#include <vector>
namespace llvm {
class MachineConstantPoolValue;
class MachineFunction;
class MDNode;
class SDDbgValue;
class TargetLowering;
class SelectionDAGTargetInfo;
class SDVTListNode : public FoldingSetNode {
friend struct FoldingSetTrait<SDVTListNode>;
/// A reference to an Interned FoldingSetNodeID for this node.
/// The Allocator in SelectionDAG holds the data.
/// SDVTList contains all types which are frequently accessed in SelectionDAG.
/// The size of this list is not expected to be big so it won't introduce
/// a memory penalty.
FoldingSetNodeIDRef FastID;
const EVT *VTs;
unsigned int NumVTs;
/// The hash value for SDVTList is fixed, so cache it to avoid
/// hash calculation.
unsigned HashValue;
public:
SDVTListNode(const FoldingSetNodeIDRef ID, const EVT *VT, unsigned int Num) :
FastID(ID), VTs(VT), NumVTs(Num) {
HashValue = ID.ComputeHash();
}
SDVTList getSDVTList() {
SDVTList result = {VTs, NumVTs};
return result;
}
};
/// Specialize FoldingSetTrait for SDVTListNode
/// to avoid computing temp FoldingSetNodeID and hash value.
template<> struct FoldingSetTrait<SDVTListNode> : DefaultFoldingSetTrait<SDVTListNode> {
static void Profile(const SDVTListNode &X, FoldingSetNodeID& ID) {
ID = X.FastID;
}
static bool Equals(const SDVTListNode &X, const FoldingSetNodeID &ID,
unsigned IDHash, FoldingSetNodeID &TempID) {
if (X.HashValue != IDHash)
return false;
return ID == X.FastID;
}
static unsigned ComputeHash(const SDVTListNode &X, FoldingSetNodeID &TempID) {
return X.HashValue;
}
};
template <> struct ilist_alloc_traits<SDNode> {
static void deleteNode(SDNode *) {
llvm_unreachable("ilist_traits<SDNode> shouldn't see a deleteNode call!");
}
};
/// Keeps track of dbg_value information through SDISel. We do
/// not build SDNodes for these so as not to perturb the generated code;
/// instead the info is kept off to the side in this structure. Each SDNode may
/// have one or more associated dbg_value entries. This information is kept in
/// DbgValMap.
/// Byval parameters are handled separately because they don't use alloca's,
/// which busts the normal mechanism. There is good reason for handling all
/// parameters separately: they may not have code generated for them, they
/// should always go at the beginning of the function regardless of other code
/// motion, and debug info for them is potentially useful even if the parameter
/// is unused. Right now only byval parameters are handled separately.
class SDDbgInfo {
BumpPtrAllocator Alloc;
SmallVector<SDDbgValue*, 32> DbgValues;
SmallVector<SDDbgValue*, 32> ByvalParmDbgValues;
typedef DenseMap<const SDNode*, SmallVector<SDDbgValue*, 2> > DbgValMapType;
DbgValMapType DbgValMap;
void operator=(const SDDbgInfo&) = delete;
SDDbgInfo(const SDDbgInfo&) = delete;
public:
SDDbgInfo() {}
void add(SDDbgValue *V, const SDNode *Node, bool isParameter) {
if (isParameter) {
ByvalParmDbgValues.push_back(V);
} else DbgValues.push_back(V);
if (Node)
DbgValMap[Node].push_back(V);
}
/// \brief Invalidate all DbgValues attached to the node and remove
/// it from the Node-to-DbgValues map.
void erase(const SDNode *Node);
void clear() {
DbgValMap.clear();
DbgValues.clear();
ByvalParmDbgValues.clear();
Alloc.Reset();
}
BumpPtrAllocator &getAlloc() { return Alloc; }
bool empty() const {
return DbgValues.empty() && ByvalParmDbgValues.empty();
}
ArrayRef<SDDbgValue*> getSDDbgValues(const SDNode *Node) {
DbgValMapType::iterator I = DbgValMap.find(Node);
if (I != DbgValMap.end())
return I->second;
return ArrayRef<SDDbgValue*>();
}
typedef SmallVectorImpl<SDDbgValue*>::iterator DbgIterator;
DbgIterator DbgBegin() { return DbgValues.begin(); }
DbgIterator DbgEnd() { return DbgValues.end(); }
DbgIterator ByvalParmDbgBegin() { return ByvalParmDbgValues.begin(); }
DbgIterator ByvalParmDbgEnd() { return ByvalParmDbgValues.end(); }
};
class SelectionDAG;
void checkForCycles(const SelectionDAG *DAG, bool force = false);
/// This is used to represent a portion of an LLVM function in a low-level
/// Data Dependence DAG representation suitable for instruction selection.
/// This DAG is constructed as the first step of instruction selection in order
/// to allow implementation of machine specific optimizations
/// and code simplifications.
///
/// The representation used by the SelectionDAG is a target-independent
/// representation, which has some similarities to the GCC RTL representation,
/// but is significantly more simple, powerful, and is a graph form instead of a
/// linear form.
///
class SelectionDAG {
const TargetMachine &TM;
const SelectionDAGTargetInfo *TSI;
const TargetLowering *TLI;
MachineFunction *MF;
LLVMContext *Context;
CodeGenOpt::Level OptLevel;
/// The starting token.
SDNode EntryNode;
/// The root of the entire DAG.
SDValue Root;
/// A linked list of nodes in the current DAG.
ilist<SDNode> AllNodes;
/// The AllocatorType for allocating SDNodes. We use
/// pool allocation with recycling.
typedef RecyclingAllocator<BumpPtrAllocator, SDNode, sizeof(LargestSDNode),
alignof(MostAlignedSDNode)>
NodeAllocatorType;
/// Pool allocation for nodes.
NodeAllocatorType NodeAllocator;
/// This structure is used to memoize nodes, automatically performing
/// CSE with existing nodes when a duplicate is requested.
FoldingSet<SDNode> CSEMap;
/// Pool allocation for machine-opcode SDNode operands.
BumpPtrAllocator OperandAllocator;
ArrayRecycler<SDUse> OperandRecycler;
/// Pool allocation for misc. objects that are created once per SelectionDAG.
BumpPtrAllocator Allocator;
/// Tracks dbg_value information through SDISel.
SDDbgInfo *DbgInfo;
uint16_t NextPersistentId = 0;
public:
/// Clients of various APIs that cause global effects on
/// the DAG can optionally implement this interface. This allows the clients
/// to handle the various sorts of updates that happen.
///
/// A DAGUpdateListener automatically registers itself with DAG when it is
/// constructed, and removes itself when destroyed in RAII fashion.
struct DAGUpdateListener {
DAGUpdateListener *const Next;
SelectionDAG &DAG;
explicit DAGUpdateListener(SelectionDAG &D)
: Next(D.UpdateListeners), DAG(D) {
DAG.UpdateListeners = this;
}
virtual ~DAGUpdateListener() {
assert(DAG.UpdateListeners == this &&
"DAGUpdateListeners must be destroyed in LIFO order");
DAG.UpdateListeners = Next;
}
/// The node N that was deleted and, if E is not null, an
/// equivalent node E that replaced it.
virtual void NodeDeleted(SDNode *N, SDNode *E);
/// The node N that was updated.
virtual void NodeUpdated(SDNode *N);
};
struct DAGNodeDeletedListener : public DAGUpdateListener {
std::function<void(SDNode *, SDNode *)> Callback;
DAGNodeDeletedListener(SelectionDAG &DAG,
std::function<void(SDNode *, SDNode *)> Callback)
: DAGUpdateListener(DAG), Callback(Callback) {}
void NodeDeleted(SDNode *N, SDNode *E) override { Callback(N, E); }
};
/// When true, additional steps are taken to
/// ensure that getConstant() and similar functions return DAG nodes that
/// have legal types. This is important after type legalization since
/// any illegally typed nodes generated after this point will not experience
/// type legalization.
bool NewNodesMustHaveLegalTypes;
private:
/// DAGUpdateListener is a friend so it can manipulate the listener stack.
friend struct DAGUpdateListener;
/// Linked list of registered DAGUpdateListener instances.
/// This stack is maintained by DAGUpdateListener RAII.
DAGUpdateListener *UpdateListeners;
/// Implementation of setSubgraphColor.
/// Return whether we had to truncate the search.
bool setSubgraphColorHelper(SDNode *N, const char *Color,
DenseSet<SDNode *> &visited,
int level, bool &printed);
template <typename SDNodeT, typename... ArgTypes>
SDNodeT *newSDNode(ArgTypes &&... Args) {
return new (NodeAllocator.template Allocate<SDNodeT>())
SDNodeT(std::forward<ArgTypes>(Args)...);
}
/// Build a synthetic SDNodeT with the given args and extract its subclass
/// data as an integer (e.g. for use in a folding set).
///
/// The args to this function are the same as the args to SDNodeT's
/// constructor, except the second arg (assumed to be a const DebugLoc&) is
/// omitted.
template <typename SDNodeT, typename... ArgTypes>
static uint16_t getSyntheticNodeSubclassData(unsigned IROrder,
ArgTypes &&... Args) {
// The compiler can reduce this expression to a constant iff we pass an
// empty DebugLoc. Thankfully, the debug location doesn't have any bearing
// on the subclass data.
return SDNodeT(IROrder, DebugLoc(), std::forward<ArgTypes>(Args)...)
.getRawSubclassData();
}
void createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
assert(!Node->OperandList && "Node already has operands");
SDUse *Ops = OperandRecycler.allocate(
ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
for (unsigned I = 0; I != Vals.size(); ++I) {
Ops[I].setUser(Node);
Ops[I].setInitial(Vals[I]);
}
Node->NumOperands = Vals.size();
Node->OperandList = Ops;
checkForCycles(Node);
}
void removeOperands(SDNode *Node) {
if (!Node->OperandList)
return;
OperandRecycler.deallocate(
ArrayRecycler<SDUse>::Capacity::get(Node->NumOperands),
Node->OperandList);
Node->NumOperands = 0;
Node->OperandList = nullptr;
}
void operator=(const SelectionDAG&) = delete;
SelectionDAG(const SelectionDAG&) = delete;
public:
explicit SelectionDAG(const TargetMachine &TM, llvm::CodeGenOpt::Level);
~SelectionDAG();
/// Prepare this SelectionDAG to process code in the given MachineFunction.
void init(MachineFunction &mf);
/// Clear state and free memory necessary to make this
/// SelectionDAG ready to process a new block.
void clear();
MachineFunction &getMachineFunction() const { return *MF; }
const DataLayout &getDataLayout() const { return MF->getDataLayout(); }
const TargetMachine &getTarget() const { return TM; }
const TargetSubtargetInfo &getSubtarget() const { return MF->getSubtarget(); }
const TargetLowering &getTargetLoweringInfo() const { return *TLI; }
const SelectionDAGTargetInfo &getSelectionDAGInfo() const { return *TSI; }
LLVMContext *getContext() const {return Context; }
/// Pop up a GraphViz/gv window with the DAG rendered using 'dot'.
void viewGraph(const std::string &Title);
void viewGraph();
#ifndef NDEBUG
std::map<const SDNode *, std::string> NodeGraphAttrs;
#endif
/// Clear all previously defined node graph attributes.
/// Intended to be used from a debugging tool (eg. gdb).
void clearGraphAttrs();
/// Set graph attributes for a node. (eg. "color=red".)
void setGraphAttrs(const SDNode *N, const char *Attrs);
/// Get graph attributes for a node. (eg. "color=red".)
/// Used from getNodeAttributes.
const std::string getGraphAttrs(const SDNode *N) const;
/// Convenience for setting node color attribute.
void setGraphColor(const SDNode *N, const char *Color);
/// Convenience for setting subgraph color attribute.
void setSubgraphColor(SDNode *N, const char *Color);
typedef ilist<SDNode>::const_iterator allnodes_const_iterator;
allnodes_const_iterator allnodes_begin() const { return AllNodes.begin(); }
allnodes_const_iterator allnodes_end() const { return AllNodes.end(); }
typedef ilist<SDNode>::iterator allnodes_iterator;
allnodes_iterator allnodes_begin() { return AllNodes.begin(); }
allnodes_iterator allnodes_end() { return AllNodes.end(); }
ilist<SDNode>::size_type allnodes_size() const {
return AllNodes.size();
}
iterator_range<allnodes_iterator> allnodes() {
return make_range(allnodes_begin(), allnodes_end());
}
iterator_range<allnodes_const_iterator> allnodes() const {
return make_range(allnodes_begin(), allnodes_end());
}
/// Return the root tag of the SelectionDAG.
const SDValue &getRoot() const { return Root; }
/// Return the token chain corresponding to the entry of the function.
SDValue getEntryNode() const {
return SDValue(const_cast<SDNode *>(&EntryNode), 0);
}
/// Set the current root tag of the SelectionDAG.
///
const SDValue &setRoot(SDValue N) {
assert((!N.getNode() || N.getValueType() == MVT::Other) &&
"DAG root value is not a chain!");
if (N.getNode())
checkForCycles(N.getNode(), this);
Root = N;
if (N.getNode())
checkForCycles(this);
return Root;
}
/// This iterates over the nodes in the SelectionDAG, folding
/// certain types of nodes together, or eliminating superfluous nodes. The
/// Level argument controls whether Combine is allowed to produce nodes and
/// types that are illegal on the target.
void Combine(CombineLevel Level, AliasAnalysis &AA,
CodeGenOpt::Level OptLevel);
/// This transforms the SelectionDAG into a SelectionDAG that
/// only uses types natively supported by the target.
/// Returns "true" if it made any changes.
///
/// Note that this is an involved process that may invalidate pointers into
/// the graph.
bool LegalizeTypes();
/// This transforms the SelectionDAG into a SelectionDAG that is
/// compatible with the target instruction selector, as indicated by the
/// TargetLowering object.
///
/// Note that this is an involved process that may invalidate pointers into
/// the graph.
void Legalize();
/// \brief Transforms a SelectionDAG node and any operands to it into a node
/// that is compatible with the target instruction selector, as indicated by
/// the TargetLowering object.
///
/// \returns true if \c N is a valid, legal node after calling this.
///
/// This essentially runs a single recursive walk of the \c Legalize process
/// over the given node (and its operands). This can be used to incrementally
/// legalize the DAG. All of the nodes which are directly replaced,
/// potentially including N, are added to the output parameter \c
/// UpdatedNodes so that the delta to the DAG can be understood by the
/// caller.
///
/// When this returns false, N has been legalized in a way that make the
/// pointer passed in no longer valid. It may have even been deleted from the
/// DAG, and so it shouldn't be used further. When this returns true, the
/// N passed in is a legal node, and can be immediately processed as such.
/// This may still have done some work on the DAG, and will still populate
/// UpdatedNodes with any new nodes replacing those originally in the DAG.
bool LegalizeOp(SDNode *N, SmallSetVector<SDNode *, 16> &UpdatedNodes);
/// This transforms the SelectionDAG into a SelectionDAG
/// that only uses vector math operations supported by the target. This is
/// necessary as a separate step from Legalize because unrolling a vector
/// operation can introduce illegal types, which requires running
/// LegalizeTypes again.
///
/// This returns true if it made any changes; in that case, LegalizeTypes
/// is called again before Legalize.
///
/// Note that this is an involved process that may invalidate pointers into
/// the graph.
bool LegalizeVectors();
/// This method deletes all unreachable nodes in the SelectionDAG.
void RemoveDeadNodes();
/// Remove the specified node from the system. This node must
/// have no referrers.
void DeleteNode(SDNode *N);
/// Return an SDVTList that represents the list of values specified.
SDVTList getVTList(EVT VT);
SDVTList getVTList(EVT VT1, EVT VT2);
SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3);
SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4);
SDVTList getVTList(ArrayRef<EVT> VTs);
//===--------------------------------------------------------------------===//
// Node creation methods.
//
/// \brief Create a ConstantSDNode wrapping a constant value.
/// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
///
/// If only legal types can be produced, this does the necessary
/// transformations (e.g., if the vector element type is illegal).
/// @{
SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
bool isTarget = false, bool isOpaque = false);
SDValue getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
bool isTarget = false, bool isOpaque = false);
SDValue getConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
bool isTarget = false, bool isOpaque = false);
SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL,
bool isTarget = false);
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT,
bool isOpaque = false) {
return getConstant(Val, DL, VT, true, isOpaque);
}
SDValue getTargetConstant(const APInt &Val, const SDLoc &DL, EVT VT,
bool isOpaque = false) {
return getConstant(Val, DL, VT, true, isOpaque);
}
SDValue getTargetConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
bool isOpaque = false) {
return getConstant(Val, DL, VT, true, isOpaque);
}
/// @}
/// \brief Create a ConstantFPSDNode wrapping a constant value.
/// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
///
/// If only legal types can be produced, this does the necessary
/// transformations (e.g., if the vector element type is illegal).
/// The forms that take a double should only be used for simple constants
/// that can be exactly represented in VT. No checks are made.
/// @{
SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT,
bool isTarget = false);
SDValue getConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT,
bool isTarget = false);
SDValue getConstantFP(const ConstantFP &CF, const SDLoc &DL, EVT VT,
bool isTarget = false);
SDValue getTargetConstantFP(double Val, const SDLoc &DL, EVT VT) {
return getConstantFP(Val, DL, VT, true);
}
SDValue getTargetConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT) {
return getConstantFP(Val, DL, VT, true);
}
SDValue getTargetConstantFP(const ConstantFP &Val, const SDLoc &DL, EVT VT) {
return getConstantFP(Val, DL, VT, true);
}
/// @}
SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT,
int64_t offset = 0, bool isTargetGA = false,
unsigned char TargetFlags = 0);
SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT,
int64_t offset = 0,
unsigned char TargetFlags = 0) {
return getGlobalAddress(GV, DL, VT, offset, true, TargetFlags);
}
SDValue getFrameIndex(int FI, EVT VT, bool isTarget = false);
SDValue getTargetFrameIndex(int FI, EVT VT) {
return getFrameIndex(FI, VT, true);
}
SDValue getJumpTable(int JTI, EVT VT, bool isTarget = false,
unsigned char TargetFlags = 0);
SDValue getTargetJumpTable(int JTI, EVT VT, unsigned char TargetFlags = 0) {
return getJumpTable(JTI, VT, true, TargetFlags);
}
SDValue getConstantPool(const Constant *C, EVT VT,
unsigned Align = 0, int Offs = 0, bool isT=false,
unsigned char TargetFlags = 0);
SDValue getTargetConstantPool(const Constant *C, EVT VT,
unsigned Align = 0, int Offset = 0,
unsigned char TargetFlags = 0) {
return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
}
SDValue getConstantPool(MachineConstantPoolValue *C, EVT VT,
unsigned Align = 0, int Offs = 0, bool isT=false,
unsigned char TargetFlags = 0);
SDValue getTargetConstantPool(MachineConstantPoolValue *C,
EVT VT, unsigned Align = 0,
int Offset = 0, unsigned char TargetFlags=0) {
return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
}
SDValue getTargetIndex(int Index, EVT VT, int64_t Offset = 0,
unsigned char TargetFlags = 0);
// When generating a branch to a BB, we don't in general know enough
// to provide debug info for the BB at that time, so keep this one around.
SDValue getBasicBlock(MachineBasicBlock *MBB);
SDValue getBasicBlock(MachineBasicBlock *MBB, SDLoc dl);
SDValue getExternalSymbol(const char *Sym, EVT VT);
SDValue getExternalSymbol(const char *Sym, const SDLoc &dl, EVT VT);
SDValue getTargetExternalSymbol(const char *Sym, EVT VT,
unsigned char TargetFlags = 0);
SDValue getMCSymbol(MCSymbol *Sym, EVT VT);
SDValue getValueType(EVT);
SDValue getRegister(unsigned Reg, EVT VT);
SDValue getRegisterMask(const uint32_t *RegMask);
SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label);
SDValue getBlockAddress(const BlockAddress *BA, EVT VT,
int64_t Offset = 0, bool isTarget = false,
unsigned char TargetFlags = 0);
SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT,
int64_t Offset = 0,
unsigned char TargetFlags = 0) {
return getBlockAddress(BA, VT, Offset, true, TargetFlags);
}
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg,
SDValue N) {
return getNode(ISD::CopyToReg, dl, MVT::Other, Chain,
getRegister(Reg, N.getValueType()), N);
}
// This version of the getCopyToReg method takes an extra operand, which
// indicates that there is potentially an incoming glue value (if Glue is not
// null) and that there should be a glue result.
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg, SDValue N,
SDValue Glue) {
SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = { Chain, getRegister(Reg, N.getValueType()), N, Glue };
return getNode(ISD::CopyToReg, dl, VTs,
makeArrayRef(Ops, Glue.getNode() ? 4 : 3));
}
// Similar to last getCopyToReg() except parameter Reg is a SDValue
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, SDValue Reg, SDValue N,
SDValue Glue) {
SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = { Chain, Reg, N, Glue };
return getNode(ISD::CopyToReg, dl, VTs,
makeArrayRef(Ops, Glue.getNode() ? 4 : 3));
}
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT) {
SDVTList VTs = getVTList(VT, MVT::Other);
SDValue Ops[] = { Chain, getRegister(Reg, VT) };
return getNode(ISD::CopyFromReg, dl, VTs, Ops);
}
// This version of the getCopyFromReg method takes an extra operand, which
// indicates that there is potentially an incoming glue value (if Glue is not
// null) and that there should be a glue result.
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT,
SDValue Glue) {
SDVTList VTs = getVTList(VT, MVT::Other, MVT::Glue);
SDValue Ops[] = { Chain, getRegister(Reg, VT), Glue };
return getNode(ISD::CopyFromReg, dl, VTs,
makeArrayRef(Ops, Glue.getNode() ? 3 : 2));
}
SDValue getCondCode(ISD::CondCode Cond);
/// Return an ISD::VECTOR_SHUFFLE node. The number of elements in VT,
/// which must be a vector type, must match the number of mask elements
/// NumElts. An integer mask element equal to -1 is treated as undefined.
SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
ArrayRef<int> Mask);
/// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
/// which must be a vector type, must match the number of operands in Ops.
/// The operands must have the same type as (or, for integers, a type wider
/// than) VT's element type.
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef<SDValue> Ops) {
// VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
}
/// Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all
/// elements. VT must be a vector type. Op's type must be the same as (or,
/// for integers, a type wider than) VT's element type.
SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op) {
// VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
if (Op.getOpcode() == ISD::UNDEF) {
assert((VT.getVectorElementType() == Op.getValueType() ||
(VT.isInteger() &&
VT.getVectorElementType().bitsLE(Op.getValueType()))) &&
"A splatted value must have a width equal or (for integers) "
"greater than the vector element type!");
return getNode(ISD::UNDEF, SDLoc(), VT);
}
SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Op);
return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
}
/// \brief Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to
/// the shuffle node in input but with swapped operands.
///
/// Example: shuffle A, B, <0,5,2,7> -> shuffle B, A, <4,1,6,3>
SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV);
/// Convert Op, which must be of integer type, to the
/// integer type VT, by either any-extending or truncating it.
SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
/// Convert Op, which must be of integer type, to the
/// integer type VT, by either sign-extending or truncating it.
SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
/// Convert Op, which must be of integer type, to the
/// integer type VT, by either zero-extending or truncating it.
SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
/// Return the expression required to zero extend the Op
/// value assuming it was the smaller SrcTy value.
SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT SrcTy);
/// Return an operation which will any-extend the low lanes of the operand
/// into the specified vector type. For example,
/// this can convert a v16i8 into a v4i32 by any-extending the low four
/// lanes of the operand from i8 to i32.
SDValue getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL, EVT VT);
/// Return an operation which will sign extend the low lanes of the operand
/// into the specified vector type. For example,
/// this can convert a v16i8 into a v4i32 by sign extending the low four
/// lanes of the operand from i8 to i32.
SDValue getSignExtendVectorInReg(SDValue Op, const SDLoc &DL, EVT VT);
/// Return an operation which will zero extend the low lanes of the operand
/// into the specified vector type. For example,
/// this can convert a v16i8 into a v4i32 by zero extending the low four
/// lanes of the operand from i8 to i32.
SDValue getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL, EVT VT);
/// Convert Op, which must be of integer type, to the integer type VT,
/// by using an extension appropriate for the target's
/// BooleanContent for type OpVT or truncating it.
SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT);
/// Create a bitwise NOT operation as (XOR Val, -1).
SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT);
/// \brief Create a logical NOT operation as (XOR Val, BooleanOne).
SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT);
/// Return a new CALLSEQ_START node, which always must have a glue result
/// (to ensure it's not CSE'd). CALLSEQ_START does not have a useful SDLoc.
SDValue getCALLSEQ_START(SDValue Chain, SDValue Op, const SDLoc &DL) {
SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = { Chain, Op };
return getNode(ISD::CALLSEQ_START, DL, VTs, Ops);
}
/// Return a new CALLSEQ_END node, which always must have a
/// glue result (to ensure it's not CSE'd).
/// CALLSEQ_END does not have a useful SDLoc.
SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2,
SDValue InGlue, const SDLoc &DL) {
SDVTList NodeTys = getVTList(MVT::Other, MVT::Glue);
SmallVector<SDValue, 4> Ops;
Ops.push_back(Chain);
Ops.push_back(Op1);
Ops.push_back(Op2);
if (InGlue.getNode())
Ops.push_back(InGlue);
return getNode(ISD::CALLSEQ_END, DL, NodeTys, Ops);
}
/// Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getUNDEF(EVT VT) {
return getNode(ISD::UNDEF, SDLoc(), VT);
}
/// Return a GLOBAL_OFFSET_TABLE node. This does not have a useful SDLoc.
SDValue getGLOBAL_OFFSET_TABLE(EVT VT) {
return getNode(ISD::GLOBAL_OFFSET_TABLE, SDLoc(), VT);
}
/// Gets or creates the specified node.
///
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
ArrayRef<SDUse> Ops);
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
ArrayRef<SDValue> Ops, const SDNodeFlags *Flags = nullptr);
SDValue getNode(unsigned Opcode, const SDLoc &DL, ArrayRef<EVT> ResultTys,
ArrayRef<SDValue> Ops);
SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs,
ArrayRef<SDValue> Ops);
// Specialize based on number of operands.
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT);
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N);
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
SDValue N2, const SDNodeFlags *Flags = nullptr);
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
SDValue N2, SDValue N3);
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
SDValue N2, SDValue N3, SDValue N4);
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
SDValue N2, SDValue N3, SDValue N4, SDValue N5);
// Specialize again based on number of operands for nodes with a VTList
// rather than a single VT.
SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs);
SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs, SDValue N);
SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs, SDValue N1,
SDValue N2);
SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs, SDValue N1,
SDValue N2, SDValue N3);
SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs, SDValue N1,
SDValue N2, SDValue N3, SDValue N4);
SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs, SDValue N1,
SDValue N2, SDValue N3, SDValue N4, SDValue N5);
/// Compute a TokenFactor to force all the incoming stack arguments to be
/// loaded from the stack. This is used in tail call lowering to protect
/// stack arguments from being clobbered.
SDValue getStackArgumentTokenFactor(SDValue Chain);
SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
SDValue Size, unsigned Align, bool isVol, bool AlwaysInline,
bool isTailCall, MachinePointerInfo DstPtrInfo,
MachinePointerInfo SrcPtrInfo);
SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
SDValue Size, unsigned Align, bool isVol, bool isTailCall,
MachinePointerInfo DstPtrInfo,
MachinePointerInfo SrcPtrInfo);
SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
SDValue Size, unsigned Align, bool isVol, bool isTailCall,
MachinePointerInfo DstPtrInfo);
/// Helper function to make it easier to build SetCC's if you just
/// have an ISD::CondCode instead of an SDValue.
///
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS,
ISD::CondCode Cond) {
assert(LHS.getValueType().isVector() == RHS.getValueType().isVector() &&
"Cannot compare scalars to vectors");
assert(LHS.getValueType().isVector() == VT.isVector() &&
"Cannot compare scalars to vectors");
assert(Cond != ISD::SETCC_INVALID &&
"Cannot create a setCC of an invalid node.");
return getNode(ISD::SETCC, DL, VT, LHS, RHS, getCondCode(Cond));
}
/// Helper function to make it easier to build Select's if you just
/// have operands and don't want to check for vector.
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS,
SDValue RHS) {
assert(LHS.getValueType() == RHS.getValueType() &&
"Cannot use select on differing types");
assert(VT.isVector() == LHS.getValueType().isVector() &&
"Cannot mix vectors and scalars");
return getNode(Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT,
Cond, LHS, RHS);
}
/// Helper function to make it easier to build SelectCC's if you
/// just have an ISD::CondCode instead of an SDValue.
///
SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True,
SDValue False, ISD::CondCode Cond) {
return getNode(ISD::SELECT_CC, DL, True.getValueType(),
LHS, RHS, True, False, getCondCode(Cond));
}
/// VAArg produces a result and token chain, and takes a pointer
/// and a source value as input.
SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
SDValue SV, unsigned Align);
/// Gets a node for an atomic cmpxchg op. There are two
/// valid Opcodes. ISD::ATOMIC_CMO_SWAP produces the value loaded and a
/// chain result. ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS produces the value loaded,
/// a success flag (initially i1), and a chain.
SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT,
SDVTList VTs, SDValue Chain, SDValue Ptr,
SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo,
unsigned Alignment, AtomicOrdering SuccessOrdering,
AtomicOrdering FailureOrdering,
SynchronizationScope SynchScope);
SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT,
SDVTList VTs, SDValue Chain, SDValue Ptr,
SDValue Cmp, SDValue Swp, MachineMemOperand *MMO);
/// Gets a node for an atomic op, produces result (if relevant)
/// and chain and takes 2 operands.
SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain,
SDValue Ptr, SDValue Val, const Value *PtrVal,
unsigned Alignment, AtomicOrdering Ordering,
SynchronizationScope SynchScope);
SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain,
SDValue Ptr, SDValue Val, MachineMemOperand *MMO);
/// Gets a node for an atomic op, produces result and chain and
/// takes 1 operand.
SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, EVT VT,
SDValue Chain, SDValue Ptr, MachineMemOperand *MMO);
/// Gets a node for an atomic op, produces result and chain and takes N
/// operands.
SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
SDVTList VTList, ArrayRef<SDValue> Ops,
MachineMemOperand *MMO);
/// Creates a MemIntrinsicNode that may produce a
/// result and takes a list of operands. Opcode may be INTRINSIC_VOID,
/// INTRINSIC_W_CHAIN, or a target-specific opcode with a value not
/// less than FIRST_TARGET_MEMORY_OPCODE.
SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList,
ArrayRef<SDValue> Ops, EVT MemVT,
MachinePointerInfo PtrInfo, unsigned Align = 0,
bool Vol = false, bool ReadMem = true,
bool WriteMem = true, unsigned Size = 0);
SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList,
ArrayRef<SDValue> Ops, EVT MemVT,
MachineMemOperand *MMO);
/// Create a MERGE_VALUES node from the given operands.
SDValue getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl);
/// Loads are not normal binary operators: their result type is not
/// determined by their operands, and they produce a value AND a token chain.
///
/// This function will set the MOLoad flag on MMOFlags, but you can set it if
/// you want. The MOStore flag must not be set.
SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
MachinePointerInfo PtrInfo, unsigned Alignment = 0,
MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
const AAMDNodes &AAInfo = AAMDNodes(),
const MDNode *Ranges = nullptr);
SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
MachineMemOperand *MMO);
SDValue
getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain,
SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT,
unsigned Alignment = 0,
MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
const AAMDNodes &AAInfo = AAMDNodes());
SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT,
SDValue Chain, SDValue Ptr, EVT MemVT,
MachineMemOperand *MMO);
SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base,
SDValue Offset, ISD::MemIndexedMode AM);
SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
MachinePointerInfo PtrInfo, EVT MemVT, unsigned Alignment = 0,
MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
const AAMDNodes &AAInfo = AAMDNodes(),
const MDNode *Ranges = nullptr);
SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
EVT MemVT, MachineMemOperand *MMO);
/// Helper function to build ISD::STORE nodes.
///
/// This function will set the MOStore flag on MMOFlags, but you can set it if
/// you want. The MOLoad and MOInvariant flags must not be set.
SDValue
getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
MachinePointerInfo PtrInfo, unsigned Alignment = 0,
MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
const AAMDNodes &AAInfo = AAMDNodes());
SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
MachineMemOperand *MMO);
SDValue
getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
MachinePointerInfo PtrInfo, EVT TVT, unsigned Alignment = 0,
MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
const AAMDNodes &AAInfo = AAMDNodes());
SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
SDValue Ptr, EVT TVT, MachineMemOperand *MMO);
SDValue getIndexedStore(SDValue OrigStoe, const SDLoc &dl, SDValue Base,
SDValue Offset, ISD::MemIndexedMode AM);
/// Returns sum of the base pointer and offset.
SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset, const SDLoc &DL);
SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
SDValue Mask, SDValue Src0, EVT MemVT,
MachineMemOperand *MMO, ISD::LoadExtType,
bool IsExpanding = false);
SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val,
SDValue Ptr, SDValue Mask, EVT MemVT,
MachineMemOperand *MMO, bool IsTruncating = false,
bool IsCompressing = false);
SDValue getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
ArrayRef<SDValue> Ops, MachineMemOperand *MMO);
SDValue getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
ArrayRef<SDValue> Ops, MachineMemOperand *MMO);
/// Return (create a new or find existing) a target-specific node.
/// TargetMemSDNode should be derived class from MemSDNode.
template <class TargetMemSDNode>
SDValue getTargetMemSDNode(SDVTList VTs, ArrayRef<SDValue> Ops,
const SDLoc &dl, EVT MemVT,
MachineMemOperand *MMO);
/// Construct a node to track a Value* through the backend.
SDValue getSrcValue(const Value *v);
/// Return an MDNodeSDNode which holds an MDNode.
SDValue getMDNode(const MDNode *MD);
/// Return a bitcast using the SDLoc of the value operand, and casting to the
/// provided type. Use getNode to set a custom SDLoc.
SDValue getBitcast(EVT VT, SDValue V);
/// Return an AddrSpaceCastSDNode.
SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS,
unsigned DestAS);
/// Return the specified value casted to
/// the target's desired shift amount type.
SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op);
/// Expand the specified \c ISD::VAARG node as the Legalize pass would.
SDValue expandVAArg(SDNode *Node);
/// Expand the specified \c ISD::VACOPY node as the Legalize pass would.
SDValue expandVACopy(SDNode *Node);
/// *Mutate* the specified node in-place to have the
/// specified operands. If the resultant node already exists in the DAG,
/// this does not modify the specified node, instead it returns the node that
/// already exists. If the resultant node does not exist in the DAG, the
/// input node is returned. As a degenerate case, if you specify the same
/// input operands as the node already has, the input node is returned.
SDNode *UpdateNodeOperands(SDNode *N, SDValue Op);
SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2);
SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
SDValue Op3);
SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
SDValue Op3, SDValue Op4);
SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
SDValue Op3, SDValue Op4, SDValue Op5);
SDNode *UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops);
/// These are used for target selectors to *mutate* the
/// specified node to have the specified return type, Target opcode, and
/// operands. Note that target opcodes are stored as
/// ~TargetOpcode in the node opcode field. The resultant node is returned.
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT, SDValue Op1);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT,
SDValue Op1, SDValue Op2);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT,
SDValue Op1, SDValue Op2, SDValue Op3);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT,
ArrayRef<SDValue> Ops);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1, EVT VT2);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
EVT VT2, ArrayRef<SDValue> Ops);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
EVT VT2, SDValue Op1);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
EVT VT2, SDValue Op1, SDValue Op2);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, SDVTList VTs,
ArrayRef<SDValue> Ops);
/// This *mutates* the specified node to have the specified
/// return type, opcode, and operands.
SDNode *MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs,
ArrayRef<SDValue> Ops);
/// These are used for target selectors to create a new node
/// with specified return type(s), MachineInstr opcode, and operands.
///
/// Note that getMachineNode returns the resultant node. If there is already
/// a node of the specified opcode and operands, it returns that node instead
/// of the current one.
MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT);
MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
SDValue Op1);
MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
SDValue Op1, SDValue Op2);
MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
SDValue Op1, SDValue Op2, SDValue Op3);
MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
ArrayRef<SDValue> Ops);
MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
EVT VT2, SDValue Op1, SDValue Op2);
MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
EVT VT2, SDValue Op1, SDValue Op2, SDValue Op3);
MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
EVT VT2, ArrayRef<SDValue> Ops);
MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
EVT VT2, EVT VT3, SDValue Op1, SDValue Op2);
MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
EVT VT2, EVT VT3, SDValue Op1, SDValue Op2,
SDValue Op3);
MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl,
ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops);
MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, SDVTList VTs,
ArrayRef<SDValue> Ops);
/// A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
SDValue Operand);
/// A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
SDValue Operand, SDValue Subreg);
/// Get the specified node if it's already available, or else return NULL.
SDNode *getNodeIfExists(unsigned Opcode, SDVTList VTs, ArrayRef<SDValue> Ops,
const SDNodeFlags *Flags = nullptr);
/// Creates a SDDbgValue node.
SDDbgValue *getDbgValue(MDNode *Var, MDNode *Expr, SDNode *N, unsigned R,
bool IsIndirect, uint64_t Off, const DebugLoc &DL,
unsigned O);
/// Constant
SDDbgValue *getConstantDbgValue(MDNode *Var, MDNode *Expr, const Value *C,
uint64_t Off, const DebugLoc &DL, unsigned O);
/// FrameIndex
SDDbgValue *getFrameIndexDbgValue(MDNode *Var, MDNode *Expr, unsigned FI,
uint64_t Off, const DebugLoc &DL,
unsigned O);
/// Remove the specified node from the system. If any of its
/// operands then becomes dead, remove them as well. Inform UpdateListener
/// for each node deleted.
void RemoveDeadNode(SDNode *N);
/// This method deletes the unreachable nodes in the
/// given list, and any nodes that become unreachable as a result.
void RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes);
/// Modify anything using 'From' to use 'To' instead.
/// This can cause recursive merging of nodes in the DAG. Use the first
/// version if 'From' is known to have a single result, use the second
/// if you have two nodes with identical results (or if 'To' has a superset
/// of the results of 'From'), use the third otherwise.
///
/// These methods all take an optional UpdateListener, which (if not null) is
/// informed about nodes that are deleted and modified due to recursive
/// changes in the dag.
///
/// These functions only replace all existing uses. It's possible that as
/// these replacements are being performed, CSE may cause the From node
/// to be given new uses. These new uses of From are left in place, and
/// not automatically transferred to To.
///
void ReplaceAllUsesWith(SDValue From, SDValue Op);
void ReplaceAllUsesWith(SDNode *From, SDNode *To);
void ReplaceAllUsesWith(SDNode *From, const SDValue *To);
/// Replace any uses of From with To, leaving
/// uses of other values produced by From.Val alone.
void ReplaceAllUsesOfValueWith(SDValue From, SDValue To);
/// Like ReplaceAllUsesOfValueWith, but for multiple values at once.
/// This correctly handles the case where
/// there is an overlap between the From values and the To values.
void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To,
unsigned Num);
/// Topological-sort the AllNodes list and a
/// assign a unique node id for each node in the DAG based on their
/// topological order. Returns the number of nodes.
unsigned AssignTopologicalOrder();
/// Move node N in the AllNodes list to be immediately
/// before the given iterator Position. This may be used to update the
/// topological ordering when the list of nodes is modified.
void RepositionNode(allnodes_iterator Position, SDNode *N) {
AllNodes.insert(Position, AllNodes.remove(N));
}
/// Returns true if the opcode is a commutative binary operation.
static bool isCommutativeBinOp(unsigned Opcode) {
// FIXME: This should get its info from the td file, so that we can include
// target info.
switch (Opcode) {
case ISD::ADD:
case ISD::SMIN:
case ISD::SMAX:
case ISD::UMIN:
case ISD::UMAX:
case ISD::MUL:
case ISD::MULHU:
case ISD::MULHS:
case ISD::SMUL_LOHI:
case ISD::UMUL_LOHI:
case ISD::FADD:
case ISD::FMUL:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
case ISD::SADDO:
case ISD::UADDO:
case ISD::ADDC:
case ISD::ADDE:
case ISD::FMINNUM:
case ISD::FMAXNUM:
case ISD::FMINNAN:
case ISD::FMAXNAN:
return true;
default: return false;
}
}
/// Returns an APFloat semantics tag appropriate for the given type. If VT is
/// a vector type, the element semantics are returned.
static const fltSemantics &EVTToAPFloatSemantics(EVT VT) {
switch (VT.getScalarType().getSimpleVT().SimpleTy) {
default: llvm_unreachable("Unknown FP format");
case MVT::f16: return APFloat::IEEEhalf();
case MVT::f32: return APFloat::IEEEsingle();
case MVT::f64: return APFloat::IEEEdouble();
case MVT::f80: return APFloat::x87DoubleExtended();
case MVT::f128: return APFloat::IEEEquad();
case MVT::ppcf128: return APFloat::PPCDoubleDouble();
}
}
/// Add a dbg_value SDNode. If SD is non-null that means the
/// value is produced by SD.
void AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter);
/// Get the debug values which reference the given SDNode.
ArrayRef<SDDbgValue*> GetDbgValues(const SDNode* SD) {
return DbgInfo->getSDDbgValues(SD);
}
private:
/// Transfer SDDbgValues. Called via ReplaceAllUses{OfValue}?With
void TransferDbgValues(SDValue From, SDValue To);
public:
/// Return true if there are any SDDbgValue nodes associated
/// with this SelectionDAG.
bool hasDebugValues() const { return !DbgInfo->empty(); }
SDDbgInfo::DbgIterator DbgBegin() { return DbgInfo->DbgBegin(); }
SDDbgInfo::DbgIterator DbgEnd() { return DbgInfo->DbgEnd(); }
SDDbgInfo::DbgIterator ByvalParmDbgBegin() {
return DbgInfo->ByvalParmDbgBegin();
}
SDDbgInfo::DbgIterator ByvalParmDbgEnd() {
return DbgInfo->ByvalParmDbgEnd();
}
void dump() const;
/// Create a stack temporary, suitable for holding the specified value type.
/// If minAlign is specified, the slot size will have at least that alignment.
SDValue CreateStackTemporary(EVT VT, unsigned minAlign = 1);
/// Create a stack temporary suitable for holding either of the specified
/// value types.
SDValue CreateStackTemporary(EVT VT1, EVT VT2);
SDValue FoldSymbolOffset(unsigned Opcode, EVT VT,
const GlobalAddressSDNode *GA,
const SDNode *N2);
SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
SDNode *Cst1, SDNode *Cst2);
SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
const ConstantSDNode *Cst1,
const ConstantSDNode *Cst2);
SDValue FoldConstantVectorArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
ArrayRef<SDValue> Ops,
const SDNodeFlags *Flags = nullptr);
/// Constant fold a setcc to true or false.
SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond,
const SDLoc &dl);
/// Return true if the sign bit of Op is known to be zero.
/// We use this predicate to simplify operations downstream.
bool SignBitIsZero(SDValue Op, unsigned Depth = 0) const;
/// Return true if 'Op & Mask' is known to be zero. We
/// use this predicate to simplify operations downstream. Op and Mask are
/// known to be the same type.
bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth = 0)
const;
/// Determine which bits of Op are known to be either zero or one and return
/// them in the KnownZero/KnownOne bitsets. For vectors, the known bits are
/// those that are shared by every vector element.
/// Targets can implement the computeKnownBitsForTargetNode method in the
/// TargetLowering class to allow target nodes to be understood.
void computeKnownBits(SDValue Op, APInt &KnownZero, APInt &KnownOne,
unsigned Depth = 0) const;
/// Determine which bits of Op are known to be either zero or one and return
/// them in the KnownZero/KnownOne bitsets. The DemandedElts argument allows
/// us to only collect the known bits that are shared by the requested vector
/// elements.
/// Targets can implement the computeKnownBitsForTargetNode method in the
/// TargetLowering class to allow target nodes to be understood.
void computeKnownBits(SDValue Op, APInt &KnownZero, APInt &KnownOne,
const APInt &DemandedElts, unsigned Depth = 0) const;
/// Test if the given value is known to have exactly one bit set. This differs
/// from computeKnownBits in that it doesn't necessarily determine which bit
/// is set.
bool isKnownToBeAPowerOfTwo(SDValue Val) const;
/// Return the number of times the sign bit of the register is replicated into
/// the other bits. We know that at least 1 bit is always equal to the sign
/// bit (itself), but other cases can give us information. For example,
/// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
/// to each other, so we return 3. Targets can implement the
/// ComputeNumSignBitsForTarget method in the TargetLowering class to allow
/// target nodes to be understood.
unsigned ComputeNumSignBits(SDValue Op, unsigned Depth = 0) const;
/// Return true if the specified operand is an ISD::ADD with a ConstantSDNode
/// on the right-hand side, or if it is an ISD::OR with a ConstantSDNode that
/// is guaranteed to have the same semantics as an ADD. This handles the
/// equivalence:
/// X|Cst == X+Cst iff X&Cst = 0.
bool isBaseWithConstantOffset(SDValue Op) const;
/// Test whether the given SDValue is known to never be NaN.
bool isKnownNeverNaN(SDValue Op) const;
/// Test whether the given SDValue is known to never be positive or negative
/// zero.
bool isKnownNeverZero(SDValue Op) const;
/// Test whether two SDValues are known to compare equal. This
/// is true if they are the same value, or if one is negative zero and the
/// other positive zero.
bool isEqualTo(SDValue A, SDValue B) const;
/// Return true if A and B have no common bits set. As an example, this can
/// allow an 'add' to be transformed into an 'or'.
bool haveNoCommonBitsSet(SDValue A, SDValue B) const;
/// Utility function used by legalize and lowering to
/// "unroll" a vector operation by splitting out the scalars and operating
/// on each element individually. If the ResNE is 0, fully unroll the vector
/// op. If ResNE is less than the width of the vector op, unroll up to ResNE.
/// If the ResNE is greater than the width of the vector op, unroll the
/// vector op and fill the end of the resulting vector with UNDEFS.
SDValue UnrollVectorOp(SDNode *N, unsigned ResNE = 0);
/// Return true if loads are next to each other and can be
/// merged. Check that both are nonvolatile and if LD is loading
/// 'Bytes' bytes from a location that is 'Dist' units away from the
/// location that the 'Base' load is loading from.
bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base,
unsigned Bytes, int Dist) const;
/// Infer alignment of a load / store address. Return 0 if
/// it cannot be inferred.
unsigned InferPtrAlignment(SDValue Ptr) const;
/// Compute the VTs needed for the low/hi parts of a type
/// which is split (or expanded) into two not necessarily identical pieces.
std::pair<EVT, EVT> GetSplitDestVTs(const EVT &VT) const;
/// Split the vector with EXTRACT_SUBVECTOR using the provides
/// VTs and return the low/high part.
std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL,
const EVT &LoVT, const EVT &HiVT);
/// Split the vector with EXTRACT_SUBVECTOR and return the low/high part.
std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL) {
EVT LoVT, HiVT;
std::tie(LoVT, HiVT) = GetSplitDestVTs(N.getValueType());
return SplitVector(N, DL, LoVT, HiVT);
}
/// Split the node's operand with EXTRACT_SUBVECTOR and
/// return the low/high part.
std::pair<SDValue, SDValue> SplitVectorOperand(const SDNode *N, unsigned OpNo)
{
return SplitVector(N->getOperand(OpNo), SDLoc(N));
}
/// Append the extracted elements from Start to Count out of the vector Op
/// in Args. If Count is 0, all of the elements will be extracted.
void ExtractVectorElements(SDValue Op, SmallVectorImpl<SDValue> &Args,
unsigned Start = 0, unsigned Count = 0);
/// Compute the default alignment value for the given type.
unsigned getEVTAlignment(EVT MemoryVT) const;
/// Test whether the given value is a constant int or similar node.
SDNode *isConstantIntBuildVectorOrConstantInt(SDValue N);
/// Test whether the given value is a constant FP or similar node.
SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N);
/// \returns true if \p N is any kind of constant or build_vector of
/// constants, int or float. If a vector, it may not necessarily be a splat.
inline bool isConstantValueOfAnyType(SDValue N) {
return isConstantIntBuildVectorOrConstantInt(N) ||
isConstantFPBuildVectorOrConstantFP(N);
}
private:
void InsertNode(SDNode *N);
bool RemoveNodeFromCSEMaps(SDNode *N);
void AddModifiedNodeToCSEMaps(SDNode *N);
SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op, void *&InsertPos);
SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op1, SDValue Op2,
void *&InsertPos);
SDNode *FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
void *&InsertPos);
SDNode *UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &loc);
void DeleteNodeNotInCSEMaps(SDNode *N);
void DeallocateNode(SDNode *N);
void allnodes_clear();
SDNode *GetBinarySDNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs,
SDValue N1, SDValue N2,
const SDNodeFlags *Flags = nullptr);
/// Look up the node specified by ID in CSEMap. If it exists, return it. If
/// not, return the insertion token that will make insertion faster. This
/// overload is for nodes other than Constant or ConstantFP, use the other one
/// for those.
SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos);
/// Look up the node specified by ID in CSEMap. If it exists, return it. If
/// not, return the insertion token that will make insertion faster. Performs
/// additional processing for constant nodes.
SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, const SDLoc &DL,
void *&InsertPos);
/// List of non-single value types.
FoldingSet<SDVTListNode> VTListMap;
/// Maps to auto-CSE operations.
std::vector<CondCodeSDNode*> CondCodeNodes;
std::vector<SDNode*> ValueTypeNodes;
std::map<EVT, SDNode*, EVT::compareRawBits> ExtendedValueTypeNodes;
StringMap<SDNode*> ExternalSymbols;
std::map<std::pair<std::string, unsigned char>,SDNode*> TargetExternalSymbols;
DenseMap<MCSymbol *, SDNode *> MCSymbols;
};
template <> struct GraphTraits<SelectionDAG*> : public GraphTraits<SDNode*> {
typedef pointer_iterator<SelectionDAG::allnodes_iterator> nodes_iterator;
static nodes_iterator nodes_begin(SelectionDAG *G) {
return nodes_iterator(G->allnodes_begin());
}
static nodes_iterator nodes_end(SelectionDAG *G) {
return nodes_iterator(G->allnodes_end());
}
};
template <class TargetMemSDNode>
SDValue SelectionDAG::getTargetMemSDNode(SDVTList VTs,
ArrayRef<SDValue> Ops,
const SDLoc &dl, EVT MemVT,
MachineMemOperand *MMO) {
/// Compose node ID and try to find an existing node.
FoldingSetNodeID ID;
unsigned Opcode =
TargetMemSDNode(dl.getIROrder(), DebugLoc(), VTs, MemVT, MMO).getOpcode();
ID.AddInteger(Opcode);
ID.AddPointer(VTs.VTs);
for (auto& Op : Ops) {
ID.AddPointer(Op.getNode());
ID.AddInteger(Op.getResNo());
}
ID.AddInteger(MemVT.getRawBits());
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
ID.AddInteger(getSyntheticNodeSubclassData<TargetMemSDNode>(
dl.getIROrder(), VTs, MemVT, MMO));
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
cast<TargetMemSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
/// Existing node was not found. Create a new one.
auto *N = newSDNode<TargetMemSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
MemVT, MMO);
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
} // end namespace llvm
#endif
|