/usr/include/llvm-4.0/llvm/CodeGen/SlotIndexes.h is in llvm-4.0-dev 1:4.0.1-10.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 | //===- llvm/CodeGen/SlotIndexes.h - Slot indexes representation -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements SlotIndex and related classes. The purpose of SlotIndex
// is to describe a position at which a register can become live, or cease to
// be live.
//
// SlotIndex is mostly a proxy for entries of the SlotIndexList, a class which
// is held is LiveIntervals and provides the real numbering. This allows
// LiveIntervals to perform largely transparent renumbering.
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_SLOTINDEXES_H
#define LLVM_CODEGEN_SLOTINDEXES_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IntervalMap.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/ilist.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBundle.h"
#include "llvm/Support/Allocator.h"
namespace llvm {
/// This class represents an entry in the slot index list held in the
/// SlotIndexes pass. It should not be used directly. See the
/// SlotIndex & SlotIndexes classes for the public interface to this
/// information.
class IndexListEntry : public ilist_node<IndexListEntry> {
MachineInstr *mi;
unsigned index;
public:
IndexListEntry(MachineInstr *mi, unsigned index) : mi(mi), index(index) {}
MachineInstr* getInstr() const { return mi; }
void setInstr(MachineInstr *mi) {
this->mi = mi;
}
unsigned getIndex() const { return index; }
void setIndex(unsigned index) {
this->index = index;
}
#ifdef EXPENSIVE_CHECKS
// When EXPENSIVE_CHECKS is defined, "erased" index list entries will
// actually be moved to a "graveyard" list, and have their pointers
// poisoned, so that dangling SlotIndex access can be reliably detected.
void setPoison() {
intptr_t tmp = reinterpret_cast<intptr_t>(mi);
assert(((tmp & 0x1) == 0x0) && "Pointer already poisoned?");
tmp |= 0x1;
mi = reinterpret_cast<MachineInstr*>(tmp);
}
bool isPoisoned() const { return (reinterpret_cast<intptr_t>(mi) & 0x1) == 0x1; }
#endif // EXPENSIVE_CHECKS
};
template <>
struct ilist_alloc_traits<IndexListEntry>
: public ilist_noalloc_traits<IndexListEntry> {};
/// SlotIndex - An opaque wrapper around machine indexes.
class SlotIndex {
friend class SlotIndexes;
enum Slot {
/// Basic block boundary. Used for live ranges entering and leaving a
/// block without being live in the layout neighbor. Also used as the
/// def slot of PHI-defs.
Slot_Block,
/// Early-clobber register use/def slot. A live range defined at
/// Slot_EarlyClobber interferes with normal live ranges killed at
/// Slot_Register. Also used as the kill slot for live ranges tied to an
/// early-clobber def.
Slot_EarlyClobber,
/// Normal register use/def slot. Normal instructions kill and define
/// register live ranges at this slot.
Slot_Register,
/// Dead def kill point. Kill slot for a live range that is defined by
/// the same instruction (Slot_Register or Slot_EarlyClobber), but isn't
/// used anywhere.
Slot_Dead,
Slot_Count
};
PointerIntPair<IndexListEntry*, 2, unsigned> lie;
SlotIndex(IndexListEntry *entry, unsigned slot)
: lie(entry, slot) {}
IndexListEntry* listEntry() const {
assert(isValid() && "Attempt to compare reserved index.");
#ifdef EXPENSIVE_CHECKS
assert(!lie.getPointer()->isPoisoned() &&
"Attempt to access deleted list-entry.");
#endif // EXPENSIVE_CHECKS
return lie.getPointer();
}
unsigned getIndex() const {
return listEntry()->getIndex() | getSlot();
}
/// Returns the slot for this SlotIndex.
Slot getSlot() const {
return static_cast<Slot>(lie.getInt());
}
public:
enum {
/// The default distance between instructions as returned by distance().
/// This may vary as instructions are inserted and removed.
InstrDist = 4 * Slot_Count
};
/// Construct an invalid index.
SlotIndex() : lie(nullptr, 0) {}
// Construct a new slot index from the given one, and set the slot.
SlotIndex(const SlotIndex &li, Slot s) : lie(li.listEntry(), unsigned(s)) {
assert(lie.getPointer() != nullptr &&
"Attempt to construct index with 0 pointer.");
}
/// Returns true if this is a valid index. Invalid indices do
/// not point into an index table, and cannot be compared.
bool isValid() const {
return lie.getPointer();
}
/// Return true for a valid index.
explicit operator bool() const { return isValid(); }
/// Print this index to the given raw_ostream.
void print(raw_ostream &os) const;
/// Dump this index to stderr.
void dump() const;
/// Compare two SlotIndex objects for equality.
bool operator==(SlotIndex other) const {
return lie == other.lie;
}
/// Compare two SlotIndex objects for inequality.
bool operator!=(SlotIndex other) const {
return lie != other.lie;
}
/// Compare two SlotIndex objects. Return true if the first index
/// is strictly lower than the second.
bool operator<(SlotIndex other) const {
return getIndex() < other.getIndex();
}
/// Compare two SlotIndex objects. Return true if the first index
/// is lower than, or equal to, the second.
bool operator<=(SlotIndex other) const {
return getIndex() <= other.getIndex();
}
/// Compare two SlotIndex objects. Return true if the first index
/// is greater than the second.
bool operator>(SlotIndex other) const {
return getIndex() > other.getIndex();
}
/// Compare two SlotIndex objects. Return true if the first index
/// is greater than, or equal to, the second.
bool operator>=(SlotIndex other) const {
return getIndex() >= other.getIndex();
}
/// isSameInstr - Return true if A and B refer to the same instruction.
static bool isSameInstr(SlotIndex A, SlotIndex B) {
return A.lie.getPointer() == B.lie.getPointer();
}
/// isEarlierInstr - Return true if A refers to an instruction earlier than
/// B. This is equivalent to A < B && !isSameInstr(A, B).
static bool isEarlierInstr(SlotIndex A, SlotIndex B) {
return A.listEntry()->getIndex() < B.listEntry()->getIndex();
}
/// Return true if A refers to the same instruction as B or an earlier one.
/// This is equivalent to !isEarlierInstr(B, A).
static bool isEarlierEqualInstr(SlotIndex A, SlotIndex B) {
return !isEarlierInstr(B, A);
}
/// Return the distance from this index to the given one.
int distance(SlotIndex other) const {
return other.getIndex() - getIndex();
}
/// Return the scaled distance from this index to the given one, where all
/// slots on the same instruction have zero distance.
int getInstrDistance(SlotIndex other) const {
return (other.listEntry()->getIndex() - listEntry()->getIndex())
/ Slot_Count;
}
/// isBlock - Returns true if this is a block boundary slot.
bool isBlock() const { return getSlot() == Slot_Block; }
/// isEarlyClobber - Returns true if this is an early-clobber slot.
bool isEarlyClobber() const { return getSlot() == Slot_EarlyClobber; }
/// isRegister - Returns true if this is a normal register use/def slot.
/// Note that early-clobber slots may also be used for uses and defs.
bool isRegister() const { return getSlot() == Slot_Register; }
/// isDead - Returns true if this is a dead def kill slot.
bool isDead() const { return getSlot() == Slot_Dead; }
/// Returns the base index for associated with this index. The base index
/// is the one associated with the Slot_Block slot for the instruction
/// pointed to by this index.
SlotIndex getBaseIndex() const {
return SlotIndex(listEntry(), Slot_Block);
}
/// Returns the boundary index for associated with this index. The boundary
/// index is the one associated with the Slot_Block slot for the instruction
/// pointed to by this index.
SlotIndex getBoundaryIndex() const {
return SlotIndex(listEntry(), Slot_Dead);
}
/// Returns the register use/def slot in the current instruction for a
/// normal or early-clobber def.
SlotIndex getRegSlot(bool EC = false) const {
return SlotIndex(listEntry(), EC ? Slot_EarlyClobber : Slot_Register);
}
/// Returns the dead def kill slot for the current instruction.
SlotIndex getDeadSlot() const {
return SlotIndex(listEntry(), Slot_Dead);
}
/// Returns the next slot in the index list. This could be either the
/// next slot for the instruction pointed to by this index or, if this
/// index is a STORE, the first slot for the next instruction.
/// WARNING: This method is considerably more expensive than the methods
/// that return specific slots (getUseIndex(), etc). If you can - please
/// use one of those methods.
SlotIndex getNextSlot() const {
Slot s = getSlot();
if (s == Slot_Dead) {
return SlotIndex(&*++listEntry()->getIterator(), Slot_Block);
}
return SlotIndex(listEntry(), s + 1);
}
/// Returns the next index. This is the index corresponding to the this
/// index's slot, but for the next instruction.
SlotIndex getNextIndex() const {
return SlotIndex(&*++listEntry()->getIterator(), getSlot());
}
/// Returns the previous slot in the index list. This could be either the
/// previous slot for the instruction pointed to by this index or, if this
/// index is a Slot_Block, the last slot for the previous instruction.
/// WARNING: This method is considerably more expensive than the methods
/// that return specific slots (getUseIndex(), etc). If you can - please
/// use one of those methods.
SlotIndex getPrevSlot() const {
Slot s = getSlot();
if (s == Slot_Block) {
return SlotIndex(&*--listEntry()->getIterator(), Slot_Dead);
}
return SlotIndex(listEntry(), s - 1);
}
/// Returns the previous index. This is the index corresponding to this
/// index's slot, but for the previous instruction.
SlotIndex getPrevIndex() const {
return SlotIndex(&*--listEntry()->getIterator(), getSlot());
}
};
template <> struct isPodLike<SlotIndex> { static const bool value = true; };
inline raw_ostream& operator<<(raw_ostream &os, SlotIndex li) {
li.print(os);
return os;
}
typedef std::pair<SlotIndex, MachineBasicBlock*> IdxMBBPair;
inline bool operator<(SlotIndex V, const IdxMBBPair &IM) {
return V < IM.first;
}
inline bool operator<(const IdxMBBPair &IM, SlotIndex V) {
return IM.first < V;
}
struct Idx2MBBCompare {
bool operator()(const IdxMBBPair &LHS, const IdxMBBPair &RHS) const {
return LHS.first < RHS.first;
}
};
/// SlotIndexes pass.
///
/// This pass assigns indexes to each instruction.
class SlotIndexes : public MachineFunctionPass {
private:
// IndexListEntry allocator.
BumpPtrAllocator ileAllocator;
typedef ilist<IndexListEntry> IndexList;
IndexList indexList;
#ifdef EXPENSIVE_CHECKS
IndexList graveyardList;
#endif // EXPENSIVE_CHECKS
MachineFunction *mf;
typedef DenseMap<const MachineInstr*, SlotIndex> Mi2IndexMap;
Mi2IndexMap mi2iMap;
/// MBBRanges - Map MBB number to (start, stop) indexes.
SmallVector<std::pair<SlotIndex, SlotIndex>, 8> MBBRanges;
/// Idx2MBBMap - Sorted list of pairs of index of first instruction
/// and MBB id.
SmallVector<IdxMBBPair, 8> idx2MBBMap;
IndexListEntry* createEntry(MachineInstr *mi, unsigned index) {
IndexListEntry *entry =
static_cast<IndexListEntry *>(ileAllocator.Allocate(
sizeof(IndexListEntry), alignof(IndexListEntry)));
new (entry) IndexListEntry(mi, index);
return entry;
}
/// Renumber locally after inserting curItr.
void renumberIndexes(IndexList::iterator curItr);
public:
static char ID;
SlotIndexes() : MachineFunctionPass(ID) {
initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
}
~SlotIndexes() override {
// The indexList's nodes are all allocated in the BumpPtrAllocator.
indexList.clearAndLeakNodesUnsafely();
}
void getAnalysisUsage(AnalysisUsage &au) const override;
void releaseMemory() override;
bool runOnMachineFunction(MachineFunction &fn) override;
/// Dump the indexes.
void dump() const;
/// Renumber the index list, providing space for new instructions.
void renumberIndexes();
/// Repair indexes after adding and removing instructions.
void repairIndexesInRange(MachineBasicBlock *MBB,
MachineBasicBlock::iterator Begin,
MachineBasicBlock::iterator End);
/// Returns the zero index for this analysis.
SlotIndex getZeroIndex() {
assert(indexList.front().getIndex() == 0 && "First index is not 0?");
return SlotIndex(&indexList.front(), 0);
}
/// Returns the base index of the last slot in this analysis.
SlotIndex getLastIndex() {
return SlotIndex(&indexList.back(), 0);
}
/// Returns true if the given machine instr is mapped to an index,
/// otherwise returns false.
bool hasIndex(const MachineInstr &instr) const {
return mi2iMap.count(&instr);
}
/// Returns the base index for the given instruction.
SlotIndex getInstructionIndex(const MachineInstr &MI) const {
// Instructions inside a bundle have the same number as the bundle itself.
const MachineInstr &BundleStart = *getBundleStart(MI.getIterator());
Mi2IndexMap::const_iterator itr = mi2iMap.find(&BundleStart);
assert(itr != mi2iMap.end() && "Instruction not found in maps.");
return itr->second;
}
/// Returns the instruction for the given index, or null if the given
/// index has no instruction associated with it.
MachineInstr* getInstructionFromIndex(SlotIndex index) const {
return index.isValid() ? index.listEntry()->getInstr() : nullptr;
}
/// Returns the next non-null index, if one exists.
/// Otherwise returns getLastIndex().
SlotIndex getNextNonNullIndex(SlotIndex Index) {
IndexList::iterator I = Index.listEntry()->getIterator();
IndexList::iterator E = indexList.end();
while (++I != E)
if (I->getInstr())
return SlotIndex(&*I, Index.getSlot());
// We reached the end of the function.
return getLastIndex();
}
/// getIndexBefore - Returns the index of the last indexed instruction
/// before MI, or the start index of its basic block.
/// MI is not required to have an index.
SlotIndex getIndexBefore(const MachineInstr &MI) const {
const MachineBasicBlock *MBB = MI.getParent();
assert(MBB && "MI must be inserted inna basic block");
MachineBasicBlock::const_iterator I = MI, B = MBB->begin();
for (;;) {
if (I == B)
return getMBBStartIdx(MBB);
--I;
Mi2IndexMap::const_iterator MapItr = mi2iMap.find(&*I);
if (MapItr != mi2iMap.end())
return MapItr->second;
}
}
/// getIndexAfter - Returns the index of the first indexed instruction
/// after MI, or the end index of its basic block.
/// MI is not required to have an index.
SlotIndex getIndexAfter(const MachineInstr &MI) const {
const MachineBasicBlock *MBB = MI.getParent();
assert(MBB && "MI must be inserted inna basic block");
MachineBasicBlock::const_iterator I = MI, E = MBB->end();
for (;;) {
++I;
if (I == E)
return getMBBEndIdx(MBB);
Mi2IndexMap::const_iterator MapItr = mi2iMap.find(&*I);
if (MapItr != mi2iMap.end())
return MapItr->second;
}
}
/// Return the (start,end) range of the given basic block number.
const std::pair<SlotIndex, SlotIndex> &
getMBBRange(unsigned Num) const {
return MBBRanges[Num];
}
/// Return the (start,end) range of the given basic block.
const std::pair<SlotIndex, SlotIndex> &
getMBBRange(const MachineBasicBlock *MBB) const {
return getMBBRange(MBB->getNumber());
}
/// Returns the first index in the given basic block number.
SlotIndex getMBBStartIdx(unsigned Num) const {
return getMBBRange(Num).first;
}
/// Returns the first index in the given basic block.
SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const {
return getMBBRange(mbb).first;
}
/// Returns the last index in the given basic block number.
SlotIndex getMBBEndIdx(unsigned Num) const {
return getMBBRange(Num).second;
}
/// Returns the last index in the given basic block.
SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const {
return getMBBRange(mbb).second;
}
/// Iterator over the idx2MBBMap (sorted pairs of slot index of basic block
/// begin and basic block)
typedef SmallVectorImpl<IdxMBBPair>::const_iterator MBBIndexIterator;
/// Move iterator to the next IdxMBBPair where the SlotIndex is greater or
/// equal to \p To.
MBBIndexIterator advanceMBBIndex(MBBIndexIterator I, SlotIndex To) const {
return std::lower_bound(I, idx2MBBMap.end(), To);
}
/// Get an iterator pointing to the IdxMBBPair with the biggest SlotIndex
/// that is greater or equal to \p Idx.
MBBIndexIterator findMBBIndex(SlotIndex Idx) const {
return advanceMBBIndex(idx2MBBMap.begin(), Idx);
}
/// Returns an iterator for the begin of the idx2MBBMap.
MBBIndexIterator MBBIndexBegin() const {
return idx2MBBMap.begin();
}
/// Return an iterator for the end of the idx2MBBMap.
MBBIndexIterator MBBIndexEnd() const {
return idx2MBBMap.end();
}
/// Returns the basic block which the given index falls in.
MachineBasicBlock* getMBBFromIndex(SlotIndex index) const {
if (MachineInstr *MI = getInstructionFromIndex(index))
return MI->getParent();
MBBIndexIterator I = findMBBIndex(index);
// Take the pair containing the index
MBBIndexIterator J =
((I != MBBIndexEnd() && I->first > index) ||
(I == MBBIndexEnd() && !idx2MBBMap.empty())) ? std::prev(I) : I;
assert(J != MBBIndexEnd() && J->first <= index &&
index < getMBBEndIdx(J->second) &&
"index does not correspond to an MBB");
return J->second;
}
/// Returns the MBB covering the given range, or null if the range covers
/// more than one basic block.
MachineBasicBlock* getMBBCoveringRange(SlotIndex start, SlotIndex end) const {
assert(start < end && "Backwards ranges not allowed.");
MBBIndexIterator itr = findMBBIndex(start);
if (itr == MBBIndexEnd()) {
itr = std::prev(itr);
return itr->second;
}
// Check that we don't cross the boundary into this block.
if (itr->first < end)
return nullptr;
itr = std::prev(itr);
if (itr->first <= start)
return itr->second;
return nullptr;
}
/// Insert the given machine instruction into the mapping. Returns the
/// assigned index.
/// If Late is set and there are null indexes between mi's neighboring
/// instructions, create the new index after the null indexes instead of
/// before them.
SlotIndex insertMachineInstrInMaps(MachineInstr &MI, bool Late = false) {
assert(!MI.isInsideBundle() &&
"Instructions inside bundles should use bundle start's slot.");
assert(mi2iMap.find(&MI) == mi2iMap.end() && "Instr already indexed.");
// Numbering DBG_VALUE instructions could cause code generation to be
// affected by debug information.
assert(!MI.isDebugValue() && "Cannot number DBG_VALUE instructions.");
assert(MI.getParent() != nullptr && "Instr must be added to function.");
// Get the entries where MI should be inserted.
IndexList::iterator prevItr, nextItr;
if (Late) {
// Insert MI's index immediately before the following instruction.
nextItr = getIndexAfter(MI).listEntry()->getIterator();
prevItr = std::prev(nextItr);
} else {
// Insert MI's index immediately after the preceding instruction.
prevItr = getIndexBefore(MI).listEntry()->getIterator();
nextItr = std::next(prevItr);
}
// Get a number for the new instr, or 0 if there's no room currently.
// In the latter case we'll force a renumber later.
unsigned dist = ((nextItr->getIndex() - prevItr->getIndex())/2) & ~3u;
unsigned newNumber = prevItr->getIndex() + dist;
// Insert a new list entry for MI.
IndexList::iterator newItr =
indexList.insert(nextItr, createEntry(&MI, newNumber));
// Renumber locally if we need to.
if (dist == 0)
renumberIndexes(newItr);
SlotIndex newIndex(&*newItr, SlotIndex::Slot_Block);
mi2iMap.insert(std::make_pair(&MI, newIndex));
return newIndex;
}
/// Remove the given machine instruction from the mapping.
void removeMachineInstrFromMaps(MachineInstr &MI) {
// remove index -> MachineInstr and
// MachineInstr -> index mappings
Mi2IndexMap::iterator mi2iItr = mi2iMap.find(&MI);
if (mi2iItr != mi2iMap.end()) {
IndexListEntry *miEntry(mi2iItr->second.listEntry());
assert(miEntry->getInstr() == &MI && "Instruction indexes broken.");
// FIXME: Eventually we want to actually delete these indexes.
miEntry->setInstr(nullptr);
mi2iMap.erase(mi2iItr);
}
}
/// ReplaceMachineInstrInMaps - Replacing a machine instr with a new one in
/// maps used by register allocator. \returns the index where the new
/// instruction was inserted.
SlotIndex replaceMachineInstrInMaps(MachineInstr &MI, MachineInstr &NewMI) {
Mi2IndexMap::iterator mi2iItr = mi2iMap.find(&MI);
if (mi2iItr == mi2iMap.end())
return SlotIndex();
SlotIndex replaceBaseIndex = mi2iItr->second;
IndexListEntry *miEntry(replaceBaseIndex.listEntry());
assert(miEntry->getInstr() == &MI &&
"Mismatched instruction in index tables.");
miEntry->setInstr(&NewMI);
mi2iMap.erase(mi2iItr);
mi2iMap.insert(std::make_pair(&NewMI, replaceBaseIndex));
return replaceBaseIndex;
}
/// Add the given MachineBasicBlock into the maps.
void insertMBBInMaps(MachineBasicBlock *mbb) {
MachineFunction::iterator nextMBB =
std::next(MachineFunction::iterator(mbb));
IndexListEntry *startEntry = nullptr;
IndexListEntry *endEntry = nullptr;
IndexList::iterator newItr;
if (nextMBB == mbb->getParent()->end()) {
startEntry = &indexList.back();
endEntry = createEntry(nullptr, 0);
newItr = indexList.insertAfter(startEntry->getIterator(), endEntry);
} else {
startEntry = createEntry(nullptr, 0);
endEntry = getMBBStartIdx(&*nextMBB).listEntry();
newItr = indexList.insert(endEntry->getIterator(), startEntry);
}
SlotIndex startIdx(startEntry, SlotIndex::Slot_Block);
SlotIndex endIdx(endEntry, SlotIndex::Slot_Block);
MachineFunction::iterator prevMBB(mbb);
assert(prevMBB != mbb->getParent()->end() &&
"Can't insert a new block at the beginning of a function.");
--prevMBB;
MBBRanges[prevMBB->getNumber()].second = startIdx;
assert(unsigned(mbb->getNumber()) == MBBRanges.size() &&
"Blocks must be added in order");
MBBRanges.push_back(std::make_pair(startIdx, endIdx));
idx2MBBMap.push_back(IdxMBBPair(startIdx, mbb));
renumberIndexes(newItr);
std::sort(idx2MBBMap.begin(), idx2MBBMap.end(), Idx2MBBCompare());
}
/// \brief Free the resources that were required to maintain a SlotIndex.
///
/// Once an index is no longer needed (for instance because the instruction
/// at that index has been moved), the resources required to maintain the
/// index can be relinquished to reduce memory use and improve renumbering
/// performance. Any remaining SlotIndex objects that point to the same
/// index are left 'dangling' (much the same as a dangling pointer to a
/// freed object) and should not be accessed, except to destruct them.
///
/// Like dangling pointers, access to dangling SlotIndexes can cause
/// painful-to-track-down bugs, especially if the memory for the index
/// previously pointed to has been re-used. To detect dangling SlotIndex
/// bugs, build with EXPENSIVE_CHECKS=1. This will cause "erased" indexes to
/// be retained in a graveyard instead of being freed. Operations on indexes
/// in the graveyard will trigger an assertion.
void eraseIndex(SlotIndex index) {
IndexListEntry *entry = index.listEntry();
#ifdef EXPENSIVE_CHECKS
indexList.remove(entry);
graveyardList.push_back(entry);
entry->setPoison();
#else
indexList.erase(entry);
#endif
}
};
// Specialize IntervalMapInfo for half-open slot index intervals.
template <>
struct IntervalMapInfo<SlotIndex> : IntervalMapHalfOpenInfo<SlotIndex> {
};
} // end namespace llvm
#endif // LLVM_CODEGEN_SLOTINDEXES_H
|