/usr/share/nrn/demo/dend3/dend3.nrn is in neuron 7.5-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 | func eq_diam() { return (($1^(3/2))/$2)^(2/3) }
/*
eq_diam() calculates the equivalent diameter of $2 children
according to the 3/2 power constraint of rall.
Parameters
----------------
$1 diameter of bp ( eq. cylinder )
$2 degree of branching
assumes equivalent electrotonic distances
*/
func eq_leng() { return $2 * sqrt(1e4*$1/4/global_ra/$3) }
/*
Calculates the equivalent length, L, for a section from diameter,
conductance and equivalent electronic length, Z.
Parameters
----------------
$1 diameter of section
$2 Z, eletrotonic distance section is to have
$3 conductance of passive section
Ra in a global constant
*/
func eq_z() { return $2 / sqrt(1e4*$1/4/global_ra/$3) }
/*
Returns the equivalent electrotonic distance, Z, from
diameter, length and number of children.
$1 ?
$2 length of eq cylinder
$3 ?
returns z for $1, $2, & $3
*/
func Q() { return 3^(($1-16.3)/10) }
/* computes the Q(10)=3 for a base temp of 16.3 C */
strdef nrnname
nrnname = "MH5"
/*
MH6, Revised from MH5 in densities, hillock and myelin lengths
for best fit to vc and antidromic expts. July '93
MH5.NRN a NEURON program, Revised from mh4 Aug 1991
(c) John Moore, Mike Hines
* nmyelin=6, five node-myelin pairs
* Dendrites now each have nseg=9
* Hillock now tapered in geometry and channel density
* Axon now tapered in channel density - previous uniformity made Vclamp
currents almost linear with GNa in axon
to add:
* a dynamic dendritic tree
* a coefficent for nseg ( a segmentation factor ).
*/
proc model_globals() {
/* membrane defaults */
celsius = 15
v_init = -70 /* initial voltage; v at rest */
g_passive = .0003 /* the standard pas conductance */
erev_passive = -70 /* the pas reversal potential */
global_ra = 200 /* the axial resistance */
set_ra()
gnaHH = .12
gkHH = .036
glHH = .0003
/* Conductance coefficients for various sections */
/* gfhillock = tapered from gfsoma to gfaxon */
gfsoma = .5
gfhill = 2
gfaxon = 4
gfnode = 10 /*I soma independent of this */
gfdend = 0
/* dendritic tree description */
num_of_levels = 1 /* number of levels in the dendritic tree */
root_diam = 46 /* diameter of the equiv. cylinder of tree */
z = 1.5 /* electrotonic length of tree */
/* Motoneuron */
nmyelin = 6 /* the number of myelin-node pairs */
ndend = 3 /* the # of dendrites connected to the soma */
br_degree = 2 /* degree of branching @ every level of tree */
/* shape parameters */
mlen0 = 250
mlen1 = 500
mlen2 = 1000
hlen = 10
alen = 100
}
model_globals()
create soma, hillock, axon, myelin[nmyelin], node[nmyelin], \
dend[ndend]
access soma /* set soma as default section */
proc mhg() {
/* TOPOLOGY
connect sections such that all indices radiate out from the soma.
*/
soma connect hillock(0), 0
hillock connect axon(0), 1
if (nmyelin>0) {
axon connect myelin[0](0), 1
myelin[0] connect node[0](0), 1
if (nmyelin>1) {
for i=1,nmyelin-1 {
node[i-1] connect myelin[i](0),1
myelin[i] connect node[i](0), 1
}
}
}
for i=0,ndend-1 {
soma connect dend[i](0), 1
}
/* compartmentalization */
soma { nseg= 1 }
axon { nseg= 5 }
hillock { nseg= 4 }
for i=0, nmyelin-1 {
myelin[i].nseg = 5
node[i].nseg = 1
}
dz= z/num_of_levels /* electrotonic length of each level */
for i=0,ndend-1 {
dend[i] { nseg = 27 }
}
set_ra()
morphol()
membrane()
}
proc morphol() {
/* MORPHOLOGY */
soma { L= 100 diam= 100 }
axon { L= alen diam= 10 }
/* put axon before hillock, since hillock uses diam.axon(.5) */
hillock {
L= hlen
/* linearly tapering hillock */
dsoma = soma.diam(0)
daxon = axon.diam(0)
diam(0:1) = dsoma:daxon
}
mdiam=20
myelin[0] { L= mlen0 diam= mdiam }
node[0] { L= 6 diam= 7 }
myelin[1] { L= mlen1 diam= mdiam }
node[1] { L= 6 diam= 7 }
if (nmyelin > 2) for i=2,nmyelin-1 {
myelin[i] { L= mlen2 diam= mdiam }
node[i] { L= 6 diam= 7 }
}
dz= z/num_of_levels /* electrotonic length of each level */
for i=0,ndend-1 {
dend[i] {
diam = eq_diam(root_diam,ndend)
L = eq_leng(diam,dz,g_passive)
}
}
}
proc membrane() {
/* MEMBRANE */
soma { insert hh gnabar_hh= gfsoma*gnaHH gkbar_hh= gfsoma*gkHH gl_hh= gfsoma*glHH }
hillock {
insert hh
gnabar_hh(0:1) = gfsoma*gnaHH:gfhill*gnaHH
gkbar_hh(0:1) = gfsoma*gkHH:gfhill*gkHH
gl_hh(0:1) = gfsoma*glHH:gfhill*glHH
}
axon {
insert hh /* with tapering density */
gnabar_hh(0:1) = gfhill*gnaHH:gfaxon*gnaHH
gkbar_hh(0:1) = gfhill*gkHH:gfaxon*gkHH
gl_hh(0:1) = gfhill*glHH:gfaxon*glHH
}
for i=0,nmyelin-1 {
/* check whether g_pas.myelin should = g_passive/200 */
myelin[i] { insert pas g_pas= .003/200 e_pas= v_init cm= .005}
node[i] { insert hh gnabar_hh= gfnode*gnaHH
gkbar_hh= gfnode*gkHH gl_hh= gfnode*glHH }
}
for i=0,ndend-1 {
dend[i] { insert pas g_pas= g_passive e_pas= erev_passive }
}
/* set el_hh for compatibility with FRED3.NRN */
finitialize(v_init)
fcurrent()
forall {
if (ismembrane("hh")) { el_hh= v + (ina +ik)/gl_hh }
}
}
mhg()
proc model_defaults() {
model_globals()
morphol()
membrane()
}
|