/usr/share/nrn/lib/hoc/netparmpi.hoc is in neuron 7.5-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 | {load_file("stdlib.hoc")}
begintemplate ParallelNetManager
public register_cell, nc_append
public splitcell
public set_gid2node, gid_exists, create_cell, pc, maxstepsize
public spikevec, idvec, gatherspikes, want_all_spikes, spike_record
public graphout, wantgraph, set_maxstep, serialize
public prun, pcontinue, pinit, psolve, ncell
public round_robin //simplistic partitioning
public tmpcell
// mostly for debugging
public cells, nclist, myid, nwork, nhost, prstat
external stdinit, continuerun, cvode, tstop, hoc_sf_
external cvode_active, cvode_local
objref cells, nclist, tmpcell, nil, pc
objref spikevec, idvec
objref this
objref wmat_
strdef tstr
proc init() {
pc = new ParallelContext()
nhost = pc.nhost
if (nhost < 2) { // for no PVM or MPI and for 1 host
nhost = 1
myid = 0
}else{
myid = pc.id
}
nwork = nhost
ncell = $1
cells = new List() // the worker cells
nclist = new List() // the netcons connecting to cells in this subset
maxstepsize_called_ = 0
want_graph_ = 0
edgecount_ = 0
spikevec = new Vector(1000) spikevec.resize(0)
idvec = new Vector(1000) idvec.resize(0)
}
// originally
// the gid <-> cell map was constructed in two phases.
// first we specify which gids will exist on this machine.
// Then, when create_cell is called we can decide if the cell
// will actually be created and, if so, pc.presyn actually
// creates the PreSyn, sets the gid, and makes the gid2PreSyn map.
// that is deprecated.
// Now it is best merely to call
// register_cell(gid, cellobject) and that will both call gid_exists (if it
// does not already exist), and make the mapping.
proc set_gid2node() {
// allows the myid to be different from the pc.id
if ($2 == myid) {
pc.set_gid2node($1, pc.id)
}
}
proc round_robin() { local i // simplistic partitioning
for i=0, ncell - 1 {
set_gid2node(i, i%nwork)
}
}
func gid_exists() {
return pc.gid_exists($1)
}
proc want_all_spikes() {local i
for i=0, ncell-1 {
spike_record(i)
}
}
proc spike_record() {
if (gid_exists($1)) {
pc.spike_record($1, spikevec, idvec)
}
}
// arg is gid and string that creates a cell such as "new Cell(x, y, z)"
// return the cell object (usually nil)
// this is deprecated
obfunc create_cell() { localobj cell
if (gid_exists($1)) {
sprint(tstr, "%s.tmpcell = %s", this, $s2)
execute(tstr)
register_cell($1, tmpcell)
}
cell = tmpcell
tmpcell = nil
return cell
}
proc register_cell() { localobj nc
if (!pc.gid_exists($1)) { pc.set_gid2node($1, pc.id) }
// all existing cells must have an associated gid which
// is stored in the cell's PreSyn. The nc below will be
// unreffed but the PreSyn will continue
// in existence and from the gid we will quickly be able
// to find the PreSyn and from that the Cell
// we force the cell to be an outputcell due to the danger of
// user error
cells.append($o2)
if (hoc_sf_.is_artificial($o2)) {
nc = new NetCon($o2, nil)
}else{
$o2.connect2target(nil, nc)
}
pc.cell($1, nc, 1)
}
func nc_append() {local i, se, lsrc, ltar, w, ww localobj nc
i = -1
if (gid_exists($2)) {
// target in this subset
// source may be on this or another machine
nc = cm2t($1, pc.gid2cell($2), $3, $4, $5)
i = nclist.count
nclist.append(nc)
} else if ((se = gid_exists($1)) > 0) {
// source exists but not the target
if (se != 3){ // output to another machine and it is
// not yet an outputcell
pc.outputcell($1)
}
}
if (want_graph_) {
if (wmat_ == nil) {
wmat_ = new Matrix(cells.count, cells.count, 2)
}
if ($1 != $2) {
w = wmat_.x[$1][$2]
if (w == 0) { edgecount_ += 1 }
ww = 100/$5
if (w < ww) {
wmat_.x[$1][$2] = ww
wmat_.x[$2][$1] = ww
}
}
}
return i
}
obfunc cm2t() { localobj nc
if ($3 < 0) {
nc = pc.gid_connect($1, $o2)
}else{
nc = pc.gid_connect($1, $o2.synlist.object($3))
}
nc.weight = $4
nc.delay = $5
return nc
}
proc set_maxstep() {
// arg is max allowed, return val is just for this subnet
localmaxstep_ = pc.set_maxstep(10) // arg is the maximum allowed
// printf("%d localmaxstep=%g\n", myid, localmaxstep_)
}
proc maxstepsize() {local i, m
if (!maxstepsize_called_) {
maxstepsize_called_ = 1
if (nwork > 1) {
pc.context(this, "set_maxstep")
}
set_maxstep()
}
}
// a safe way to get output sequentially on a per host basis
// without using the bulletin board. A file should be opened
// with File.aopen for appending at the beginning of the iterator_statement
// and closed at the end.
iterator serialize() {local rank
pc.barrier
for rank = 0, pc.nhost {
if (rank == pc.id) {
iterator_statement
}
pc.barrier
}
}
proc doinit() {
stdinit()
}
proc pinit() {
maxstepsize()
if (nwork > 1) {
pc.context(this, "doinit")
}
doinit() // the master does one also
}
proc psolve() {
pc.psolve($1)
}
proc pcontinue() {
if (nwork > 1) {
pc.context(this, "psolve", $1)
}
psolve($1)
}
proc prun() {
pinit()
pcontinue(tstop)
}
proc postwait() {local w, sm, s, r, ru
if ($1 == 0) {
pc.post("waittime", myid, pc.wait_time())
}else{
w = pc.wait_time()
sm = pc.spike_statistics(&s, &r, &ru)
pc.post("poststat", myid, w, sm, s, r, ru)
}
}
proc prstat() { local i, id, w, sm, s, r, ru // print the wait time and statis
if (nwork > 1) {
pc.context(this, "postwait", $1)
}
postwait($1)
if ($1 == 0) {
for i = 0, nwork - 1 {
pc.take("waittime", &id, &w)
printf("%d wait time %g\n", id, w)
}
}else{
printf("id\t nsmax\t nsend\t nrecv\t nrused\t wait\n")
for i = 0, nwork - 1 {
pc.take("poststat", &id, &w, &sm, &s, &r, &ru)
printf("%d\t %d\t %d\t %d\t %d\t %g\n", id, sm,s,r,ru,w)
}
printf("end of prstat\n")
}
}
proc postspikes() {
pc.post("postspike", spikevec, idvec)
}
proc gatherspikes() {local i localobj s, id
if (nwork > 1) {
s = new Vector()
id = new Vector()
pc.context(this, "postspikes")
for i=0, nwork-2 {
pc.take("postspike", s, id)
spikevec.append(s)
idvec.append(id)
}
}
}
proc wantgraph() {
want_graph_ = 1
}
// metis graph partitioning input file has nnode+1 line format
// nnode nedge 11
// nodes range from 1-nnode and there are nnode lines of form
// computationcost adjacentnode adjacentnodeweight adjacentnode w ...
// where computationcost must be an integer > 0 and we use adjacentnodeweight
// of 1000/mindelay.
// Although the graph is undirected I do not know if weights must be
// symetric but we force that. I do not know if
// node weight and edge weight is independent and unrelated to partitioning.
proc graphout() {local i, j, jx, x localobj f, cw
if (!want_graph_) {
printf("%s.wantgraph() was not called before building\n", this)
return
}
f = new File($s1)
f.wopen()
f.printf("%d %d 11\n", cells.count, edgecount_)
cellweight(cw)
for i=0, cells.count-1 {
f.printf("%d", cw.x[i])
for jx=0, wmat_.sprowlen(i)-1 {
x = wmat_.spgetrowval(i, jx, &j)
f.printf(" %d %d", j+1, x)
}
f.printf("\n")
}
f.close()
}
proc cellweight() {local i, act, loc
$o1 = new Vector(cells.count)
act = cvode_active()
loc = cvode_local()
if (!loc) {
cvode_local(1)
}
stdinit()
cvode.solve(.01)
for i=0, cells.count-1 {
$o1.x[i] = cells.object(i).cellweight(cvode)
}
$o1.mul(100000)
$o1.printf
if (!act) {
cvode_active(0)
}else if (!loc) {
cvode_active(1)
}
}
// The cell is split at the currently accessed section and its parent into two
// subtrees rooted at the old connection end of the cas and the old cas connection
// point of the parent (latter must be 0 or 1). The cas subtree
// will be preserved on the host id specified by $1 and the other subtree will be
// is preserved on the host id specified by $2. $2 must be $1+1 or $1-1.
// If $1 or $2 are not this host
// then the appropriate subtree is destroyed. (The whole cell is
// destroyed if neither subtree is on this host but that is a pointless case)
// (The case where $1 == $1 is an error and can not be used for testing.)
// Prior to this call the entire cell must exist on the $1 and $2 host.
// $1 and $3 specify unique positive integers for these split cell subtrees and
// Note that for spike exchange purposes
// it is important not to associate the gid with the cell on the host that
// gets the output location destroyed.
proc splitcell() {local hostcas, hostp localobj cas, p, tree
hostcas = $1
hostp = $2
cas = new SectionRef()
cas.parent p = new SectionRef() // error if cas is already a root section
reroot()
p.sec disconnect()
if (hostcas != myid) {
tree = new SectionList()
cas.sec tree.subtree()
forsec tree delete_section()
}
if (hostp != myid) {
tree = new SectionList()
p.sec tree.subtree()
forsec tree delete_section()
}
if (hostcas == myid) {
cas.sec pc.splitcell_connect(hostp)
}
if (hostp == myid) {
p.sec pc.splitcell_connect(hostcas)
}
}
// currently accessed section becomes the root of the cell
// it is an error if the sections from here to the root are not connected
// to the parent at 0 or 1
proc reroot() {local p, s_pcon, s_orient, sp_pcon, sp_orient localobj s, sp, spp
s = new SectionRef()
if (s.has_parent()) {
s.parent sp = new SectionRef()
s.sec s_pcon = parent_connection()
s.sec s_orient = section_orientation()
if (s_pcon != 0 && s_pcon != 1) {
s.sec printf("Warning, inexact re-root: %s(%g) connects to %g of ", secname(), s_orient, s_pcon)
if (s_pcon >= .5) { s_pcon = 1 } else { s_pcon = 0 }
sp.sec printf("%s parent.\n %s will reroot at orientation %g\n", secname(), secname(), s_pcon)
}
s.sec disconnect()
sp.sec sp_pcon = parent_connection()
sp.sec sp_orient = section_orientation()
while (sp.has_parent) {
// parent gets disconnected from its parent,
// and gets connected to s
// The old parent (sp) has a new parent connection to
// s at s's section orientation and sp's new orientation
// is the s's old parent connection (we demand that
// all old parent connections be at 0 or 1 and if not
// then the re-root will be inexact. Note that the
// 3d points get reversed only if the old sp orientation
// is opposite the new orientation
sp.parent spp = new SectionRef()
if (sp_pcon != 0 && sp_pcon != 1) {
sp.sec printf("Warning, inexact re-root: %s(%g) connects to %g of ", secname(), sp_orient, sp_pcon)
if (sp_pcon >= .5) { sp_pcon = 1 } else { sp_pcon = 0 }
spp.sec printf("%s parent.\n %s will reroot at orientation %g\n", secname(), secname(), sp_pcon)
}
sp.sec disconnect()
// s.sec printf("%s connect", secname())
// sp.sec printf(" %s(%g), %g\n", secname(), s_pcon, s_orient)
s.sec connect sp.sec(s_pcon), s_orient
sp.sec if (section_orientation() != sp_orient) {
reverse3d()
}
s = sp
sp = spp
s_pcon = sp_pcon
s_orient = sp_orient
sp.sec sp_orient = section_orientation()
sp.sec sp_pcon = parent_connection()
}
// parent gets connected to s
// s.sec printf("%s connect", secname())
// sp.sec printf(" %s(%g), %g\n", secname(), s_pcon, s_orient)
s.sec connect sp.sec(s_pcon), s_orient
sp.sec if (section_orientation() != sp_orient) {
reverse3d()
}
}
}
proc reverse3d() {local i, j, x, y, z, d
i = 0
j = n3d()-1
while (i < j) {
x = x3d(i) y = y3d(i) z = z3d(i) d = diam3d(i)
pt3dchange(i, x3d(j), y3d(j), z3d(j), diam3d(j))
pt3dchange(j, x, y, z, d)
i += 1
j -= 1
}
}
endtemplate ParallelNetManager
|