/usr/bin/ntpviz is in ntpsec-ntpviz 1.1.0+dfsg1-1.
This file is owned by root:root, with mode 0o755.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 | #!/usr/bin/python3
# -*- coding: utf-8 -*-
"""\
ntpviz - logfile visualizer for NTP log files
ntpviz [-d LOGDIR] [-g] [-n name] [-p DAYS]
[-s starttime] [-e endtime]
[-o OUTDIR]
[-c | --clip]
[-w SIZE | --width SIZE]
[--all-peer-jitters |
--all-peer-offsets |
--local-error |
--local-freq-temps |
--local-gps |
--local-jitter |
--local-offset |
--local-offset-histogram |
--local-offset-multiplot |
--local-stability |
--local-temps |
--peer-jitters=hosts |
--peer-offsets=hosts |
]
[-D DLVL | --debug DLVL]
[-N | --nice]
[-V | --version]
[@OPTIONFILE]
See the manual page for details.
Python by ESR, concept and gnuplot code by Dan Drown.
"""
# SPDX-License-Identifier: BSD-2-Clause
from __future__ import print_function, division
import atexit
import binascii
import collections
import csv
import datetime
import math
import re
import os
import socket
import sys
import subprocess
import tempfile
try:
import argparse
except ImportError:
sys.stderr.write("""
ntpviz: can't find the Python argparse module
If your Python version is < 2.7, then manual installation is needed:
# pip install argparse
""")
sys.exit(1)
if sys.version_info[0] == 2:
import codecs
import sys
# force UTF-8 strings, otherwise some systems crash on micro.
reload(sys)
sys.setdefaultencoding('utf8')
def open(file, mode='r', buffering=-1, encoding=None, errors=None):
return codecs.open(filename=file, mode=mode, encoding=encoding,
errors=errors, buffering=buffering)
# believe it or not, Python has no way to make a simple constant!
MS_PER_S = 1e3 # milliseconds per second
NS_PER_S = 1e9 # nanoseconds per second
US_PER_S = 1e6 # microseconds per second
S_PER_MS = 1.0e-3 # seconds per millisecond
S_PER_NS = 1.0e-9 # seconds per nanosecond
S_PER_US = 1.0e-6 # seconds per microsecond
# table to translate refclock names
refclock_name = {'127.127.20.0': 'NMEA(0)',
'127.127.20.1': 'NMEA(1)',
'127.127.20.2': 'NMEA(2)',
'127.127.20.3': 'NMEA(3)',
'127.127.22.0': 'PPS(0)',
'127.127.22.1': 'PPS(1)',
'127.127.22.2': 'PPS(2)',
'127.127.22.3': 'PPS(3)',
'127.127.28.0': 'SHM(0)',
'127.127.28.1': 'SHM(1)',
'127.127.28.2': 'SHM(2)',
'127.127.28.3': 'SHM(3)',
'127.127.46.0': 'GPS(0)',
'127.127.46.1': 'GPS(1)',
'127.127.46.2': 'GPS(2)',
'127.127.46.3': 'GPS(3)'}
# Gack, python before 3.2 has no defined tzinfo for utc...
# define our own
class UTC(datetime.tzinfo):
"""UTC"""
def utcoffset(self, dt):
return datetime.timedelta(0)
def tzname(self, dt):
return "UTC"
def dst(self, dt):
return datetime.timedelta(0)
try:
import ntp.statfiles
import ntp.util
except ImportError as e:
sys.stderr.write(
"ntpviz: can't find Python NTP library.\n")
sys.stderr.write("%s\n" % e)
sys.exit(1)
# check Python version
Python26 = False
if ((3 > sys.version_info[0]) and (7 > sys.version_info[1])):
# running under Python version before 2.7
Python26 = True
# overload ArgumentParser
class MyArgumentParser(argparse.ArgumentParser):
def convert_arg_line_to_args(self, arg_line):
'''Make options file more tolerant'''
# strip out trailing comments
arg_line = re.sub('\s+#.*$', '', arg_line)
# ignore blank lines
if 0 == len(arg_line):
return []
# ignore comment lines
if '#' == arg_line[0]:
return []
return arg_line.split()
def print_profile():
"""called by atexit() on normal exit to print profile data"""
pr.disable()
pr.print_stats('tottime')
pr.print_stats('cumtime')
# standard deviation class
# use this until we can guarantee Python 3.4 and the statistics module
# http://stackoverflow.com/questions/15389768/standard-deviation-of-a-list#21505523
# class to calc:
# Mean, Variance, Standard Deviation, Skewness and Kurtosis
class RunningStats:
"Calculate mean, variance, sigma, skewness and kurtosis"
def __init__(self, values):
self.num = len(values) # number of samples
self.mu = 0.0 # simple arithmetic mean
self.variance = 0.0 # variance
self.sigma = 0.0 # aka standard deviation
self.skewness = 0.0
self.kurtosis = 3.0
if 0 >= self.num:
# no data??
return
self.mu = sum(values) / self.num
self.variance = sum(pow((v-self.mu), 2) for v in values) / self.num
self.sigma = math.sqrt(self.variance)
if math.isnan(self.sigma) or 1e-12 >= abs(self.sigma):
# punt
self.skewness = float('nan')
self.kurtosis = float('nan')
return
m3 = 0
m4 = 0
for val in values:
m3 += pow(val - self.sigma, 3)
m4 += pow(val - self.sigma, 4)
self.skewness = m3 / (self.num * pow(self.sigma, 3))
self.kurtosis = m4 / (self.num * pow(self.sigma, 4))
# end standard deviation class
# class for calced values
class VizStats(ntp.statfiles.NTPStats):
percs = {} # dictionary of percentages
title = '' # title
unit = 's' # display units: s, ppm, etc.
skip_summary = False
clipped = False
multiplier = 1
# observe RFC 4180, end lines with CRLF
csv_head = ["Name", "Min", "1%", "5%", "50%", "95%", "99%", "Max", "",
"90% Range", "98% Range", "StdDev", "", "Mean", "Units",
"Skewness", "Kurtosis"]
table_head = """\
<br>
<table style="text-align:right;width:1300px;">
<thead>
<tr style="font-weight:bold;text-align:left;">
<td style="width:300px;"></td>
<td colspan=8> Percentiles......</td>
<td colspan=3> Ranges......</td>
<td colspan=3></td>
<td style="text-align:right;">Skew-</td>
<td style="text-align:right;">Kurt-</td>
<td ></td>
</tr>
<tr style="font-weight:bold;text-align:right;">
<td style="text-align:left;">Name</td>
<td>Min</td><td>1%</td><td>5%</td><td>50%</td><td>95%</td>
<td>99%</td><td>Max</td> <td style="width:10px;"> </td>
<td>90%</td><td>95%</td><td>StdDev</td>
<td style="width:10px;"> </td><td>Mean</td><td>Units</td>
<td>ness</td><td>osis</td>
</tr>
</thead>
"""
table_tail = """\
</table>
"""
def __init__(self, values, title, freq=0, units=''):
values.sort()
self.percs = self.percentiles((100, 99, 95, 50, 5, 1, 0), values)
# find the target for autoranging
if args.clip:
# keep 99% and 1% under 999 in selected units
# clip to 1% and 99%
target = max(self.percs["p99"], -self.percs["p1"])
else:
# keep 99% and 1% under 999 in selected units
# but do not let 100% and 1% go over 5000 in selected units
target = max(self.percs["p99"], -self.percs["p1"],
self.percs["p100"]/5, -self.percs["p0"]/5)
if len(units):
# fixed scale
self.multiplier = 1
self.unit = units
elif 1 <= target:
self.multiplier = 1
if freq:
# go to ppm
self.unit = "ppm"
else:
# go to seconds
self.unit = "s"
elif S_PER_MS <= target:
self.multiplier = MS_PER_S
if freq:
# go to ppb
self.unit = "ppb"
else:
# go to millisec
self.unit = "ms"
elif S_PER_US <= target:
self.multiplier = US_PER_S
if freq:
self.unit = "10e-12"
else:
# go to microsec
self.unit = "µs"
else:
self.multiplier = NS_PER_S
if freq:
self.unit = "10e-15"
else:
# go to nanosec
self.unit = "ns"
sts = RunningStats(values)
self.percs["mu"] = sts.mu
self.percs["pstd"] = sts.sigma
self.title = title
# calculate ranges
self.percs["r90"] = self.percs["p95"] - self.percs["p5"]
self.percs["r98"] = self.percs["p99"] - self.percs["p1"]
# calculate mean +/- std dev
self.percs["m1sigma"] = self.percs["mu"] - self.percs["pstd"]
self.percs["p1sigma"] = self.percs["mu"] + self.percs["pstd"]
# pretty print the values
self.percs_f = {}
for k, v in self.percs.items():
# range the data
v *= self.multiplier
self.percs[k] = round(v, 4)
if 'ppm' == self.unit and 0.020 > abs(self.percs[k]):
fmt = ".4f"
else:
fmt = ".3f"
if not Python26:
# Python 2.6 does not undertand the comma format option
fmt = "," + fmt
self.percs_f[k] = format(v, fmt)
# don't scale skewness and kurtosis
self.percs["skew"] = sts.skewness
self.percs["kurt"] = sts.kurtosis
if '°C' == units:
# skip for temperatures.
self.percs_f["skew"] = ''
self.percs_f["kurt"] = ''
else:
self.percs_f["skew"] = format(self.percs["skew"], "6.4g")
self.percs_f["kurt"] = format(self.percs["kurt"], "6.4g")
if args.clip:
self.percs["min_y"] = self.percs["p1"]
self.percs["max_y"] = self.percs["p99"]
self.percs["clipped"] = " (clipped)"
else:
self.percs["min_y"] = self.percs["p0"]
self.percs["max_y"] = self.percs["p100"]
self.percs["clipped"] = ""
self.fmt = gnuplot_fmt(self.percs["min_y"], self.percs["max_y"])
# Python is stupid about nested objects, so add in some other stuff
self.percs_f["fmt"] = self.percs["fmt"] = self.fmt
self.percs_f["multiplier"] = self.percs["multiplier"] = self.multiplier
self.percs_f["title"] = self.percs["title"] = self.title
self.percs_f["unit"] = self.percs["unit"] = self.unit
s = ["%(title)s", "%(p0)s", "%(p1)s", "%(p5)s", "%(p50)s", "%(p95)s",
" %(p99)s", "%(p100)s", "", "%(r90)s", "%(r98)s", "%(pstd)s",
"", "%(mu)s", "%(unit)s", "%(skew)s", "%(kurt)s", ]
# csv is raw, html table is autoranged
self.csv = [x % self.percs for x in s]
self.table = [x % self.percs_f for x in s]
self.table = "</td><td>".join(self.table)
self.table = '''\
<tr style="vertical-align:top;">
<td style="text-align:left;">%s</td>
</tr>
''' % self.table
return
def gnuplot_fmt(min, max):
"return optimal gnuplot format"
span = max - min
if 6 <= span:
fmt = '%.0f'
elif 0.6 <= span:
fmt = '%.1f'
elif 0.1 <= span:
fmt = '%.2f'
else:
fmt = '%.3f'
return fmt
# end calc things now
# RMS frequency jitter - Deviation from root-mean-square linear approximation?
# Investigate.
def gnuplot(template, outfile=None):
"Run a specified gnuplot program."
if not len(template):
# silently ignore empty plots
return ''
if outfile is None:
out = None
else:
out = open(outfile, "w", encoding='utf-8')
##
# can be 30% faster to write to a tmp file than to pipe to gnuplot
# bonus, we can keep the plot file for debug.
if sys.version_info[0] == 2:
tmp_file = tempfile.NamedTemporaryFile(mode='w',
suffix='.plt', delete=False)
else:
tmp_file = tempfile.NamedTemporaryFile(mode='w', encoding='utf-8',
suffix='.plt', delete=False)
# note that tmp_file is a file handle, it is not a file object
tmp_file.write(template)
tmp_file.close()
# shell=True is a security hazard, do not use
try:
rcode = subprocess.call(['gnuplot', tmp_file.name], stdout=out)
except OSError as e:
if e.errno == os.errno.ENOENT:
# gnuplot not found
sys.stderr.write("ntpviz: ERROR: gnuplot not found in path\n")
else:
# Something else went wrong while trying to run gnuplot
sys.stderr.write("ntpviz: ERROR: gnuplot failed\n")
raise SystemExit(1)
if 0 != rcode:
sys.stderr.write("ntpviz: WARNING: plot returned %s\n" % rcode)
sys.stderr.write("ntpviz: WARNING: plot file %s\n" % tmp_file.name)
elif 2 <= args.debug_level:
sys.stderr.write("ntpviz: INFO: plot file %s\n" % tmp_file.name)
else:
# remove tmp file
os.remove(tmp_file.name)
return rcode
class NTPViz(ntp.statfiles.NTPStats):
"Class for visualizing statistics from a single server."
# Python takes single quotes here. Since no % substitution
Common = """\
set grid
set autoscale xfixmin
set autoscale xfixmax
set xdata time
set xlabel "Time UTC"
set xtics format "%d %b\\n%H:%MZ"
set timefmt "%s"
set lmargin 10
set rmargin 10
"""
def __init__(self, statsdir,
sitename=None, period=None, starttime=None, endtime=None):
ntp.statfiles.NTPStats.__init__(self, statsdir=statsdir,
sitename=sitename,
period=period,
starttime=starttime,
endtime=endtime)
def plot_slice(self, rows, item1, item2=None):
"slice 0,item1, maybe item2, from rows, ready for gnuplot"
# speed up by only sending gnuplot the data it will actually use
# WARNING: this is hot code, only modify if you profile
# since we are looping the data, get the values too
plot_data = ''
last_time = 0
values1 = []
values2 = []
if item2:
for row in rows:
try:
values1.append(float(row[item1]))
values2.append(float(row[item2]))
if 2200000 < row[0] - last_time:
# more than 2,200 seconds between points
# data loss, add a break in the plot line
plot_data += '\n'
# fields: time, fld1, and fld2
plot_data += row[1] + ' ' + row[item1] + ' ' \
+ row[item2] + '\n'
last_time = row[0]
except IndexError:
pass
else:
for row in rows:
try:
values1.append(float(row[item1]))
if 2200000 < row[0] - last_time:
# more than 2,200 seconds between points
# data loss, add a break in the plot line
plot_data += '\n'
# fields: time, fld
plot_data += row[1] + ' ' + row[item1] + '\n'
last_time = row[0]
except IndexError:
pass
# I know you want to replace the plot_data string concat with
# or more join()s, do not do it, it is slower
# next you'll want to try %-substitution. it too is slower
plot_data += "e\n"
if item2:
return (plot_data, values1, values2)
return (plot_data, values1)
def local_offset_gnuplot(self):
"Generate gnuplot code graphing local clock loop statistics"
if not len(self.loopstats):
sys.stderr.write("ntpviz: WARNING: no loopstats to graph\n")
return ''
# speed up by only sending gnuplot the data it will actually use
# fields: time, time offset, freq offset
(plot_data, values, values_f) = self.plot_slice(self.loopstats, 2, 3)
# compute clock offset
stats = VizStats(values, "Local Clock Time Offset")
# compute frequency offset
stats_f = VizStats(values_f, "Local Clock Frequency Offset", freq=1)
out = stats.percs
out["fmt"] = stats.percs["fmt"]
out["min_y2"] = stats_f.percs["min_y"]
out["max_y2"] = stats_f.percs["max_y"]
out["unit_f"] = stats_f.percs["unit"]
out["fmt_f"] = stats_f.percs["fmt"]
out["multiplier_f"] = stats_f.percs["multiplier"]
out["sitename"] = self.sitename
out['size'] = args.png_size
plot_template = NTPViz.Common + """\
set terminal png size %(size)s
set title "%(sitename)s: Local Clock Time/Frequency Offsets%(clipped)s"
set ytics format "%(fmt)s %(unit)s" nomirror textcolor rgb '#0060ad'
set yrange [%(min_y)s:%(max_y)s]
set y2tics format "%(fmt_f)s %(unit_f)s" nomirror textcolor rgb '#dd181f'
set y2range [%(min_y2)s:%(max_y2)s]
set key top right
set style line 1 lc rgb '#0060ad' lt 1 lw 1 pt 7 ps 0 # --- blue
set style line 2 lc rgb '#dd181f' lt 1 lw 1 pt 5 ps 0 # --- red
plot \
"-" using 1:($2*%(multiplier)s) title "clock offset %(unit)s" \
with linespoints ls 1, \
"-" using 1:($3*%(multiplier_f)s) title "frequency offset %(unit_f)s" \
with linespoints ls 2 axis x1y2
""" % out
exp = """\
<p>The time and frequency offsets between the ntpd calculated time
and the local system clock. Showing frequency offset (red, in parts
per million, scale on right) and the time offset (blue, in μs, scale
on left). Quick changes in time offset will lead to larger frequency
offsets.</p>
<p>These are fields 3 (time) and 4 (frequency) from the loopstats log
file.</p>
"""
ret = {'html': VizStats.table_head + stats.table +
stats_f.table + VizStats.table_tail + exp,
'plot': plot_template + plot_data + plot_data,
'stats': [stats, stats_f],
'title': "Local Clock Time/Frequency Offsets"}
return ret
def local_freq_temps_plot(self):
"Generate gnuplot code graphing local frequency and temps"
if not len(self.loopstats):
sys.stderr.write("ntpviz: WARNING: no loopstats to graph\n")
return ''
tempsmap = self.tempssplit()
tempslist = list(tempsmap.keys())
tempslist.sort()
if not len(tempsmap) or not len(tempslist):
sys.stderr.write("ntpviz: WARNING: no temps to graph\n")
return ''
# speed up by only sending gnuplot the data it will actually use
# fields: time, freq offset
(plot_data, values_f) = self.plot_slice(self.loopstats, 3)
# compute frequency offset
stats_f = VizStats(values_f, "Local Clock Frequency Offset", freq=1)
stats = [stats_f]
table = ''
plot_data_t = ''
max_temp = -300
min_temp = 1000
for key in tempslist:
# speed up by only sending gnuplot the data it will actually use
# fields: time, temp
(p, v) = self.plot_slice(tempsmap[key], 3)
plot_data_t += p
s = VizStats(v, 'Temp %s' % key, units='°C')
max_temp = max(s.percs["max_y"], max_temp)
min_temp = min(s.percs["min_y"], min_temp)
table += s.table
stats.append(s)
# out = stats.percs
out = {}
if args.clip:
out["clipped"] = " (clipped)"
else:
out["clipped"] = ""
out['fmt'] = gnuplot_fmt(min_temp, max_temp)
out["fmt_f"] = stats_f.percs["fmt"]
out["max_y2"] = stats_f.percs["max_y"]
out["min_y2"] = stats_f.percs["min_y"]
out["multiplier_f"] = stats_f.percs["multiplier"]
out["sitename"] = self.sitename
out['size'] = args.png_size
out["unit"] = '°C'
out["unit_f"] = stats_f.percs["unit"]
# let temp autoscale
# set yrange [%(min_y)s:%(max_y)s]
plot_template = NTPViz.Common + """\
set terminal png size %(size)s
set title "%(sitename)s: Local Frequency Offset/Temps%(clipped)s"
set ytics format "%(fmt)s %(unit)s" nomirror textcolor rgb '#0060ad'
set y2tics format "%(fmt_f)s %(unit_f)s" nomirror textcolor rgb '#dd181f'
set y2range [%(min_y2)s:%(max_y2)s]
set key top right
set style line 1 lc rgb '#dd181f' lt 1 lw 1 pt 5 ps 0 # --- red
plot \
"-" using 1:($2*%(multiplier_f)s) title "frequency offset %(unit_f)s" \
with linespoints ls 1 axis x1y2, \
""" % out
for key in tempslist:
out['key'] = key
plot_template += "'-' using 1:2 title '%(key)s' with line, \\\n" \
% out
# strip trailing ", \n"
plot_template = plot_template[:-4] + "\n"
exp = """\
<p>The frequency offsets and temperatures.
Showing frequency offset (red, in parts
per million, scale on right) and the temeratures.</p>
<p>These are field 4 (frequency) from the loopstats log
file, and field 3 from the temp log .</p>
"""
ret = {'html': VizStats.table_head + stats_f.table +
table + VizStats.table_tail + exp,
'plot': plot_template + plot_data + plot_data_t,
'stats': stats,
'title': "Local Frequency/Temp"}
return ret
def local_temps_gnuplot(self):
"Generate gnuplot code graphing local temperature statistics"
sitename = self.sitename
tempsmap = self.tempssplit()
tempslist = list(tempsmap.keys())
tempslist.sort()
if not len(tempsmap) or not len(tempslist):
sys.stderr.write("ntpviz: WARNING: no temps to graph\n")
return ''
stats = []
plot_data = ''
max_temp = -300
min_temp = 1000
for key in tempslist:
# speed up by only sending gnuplot the data it will actually use
# fields: time, temp
(p, v) = self.plot_slice(tempsmap[key], 3)
s = VizStats(v, 'Temp %s' % key, units='°C')
max_temp = max(s.percs["max_y"], max_temp)
min_temp = min(s.percs["min_y"], min_temp)
plot_data += p
out = {}
out['fmt'] = gnuplot_fmt(min_temp, max_temp)
out['sitename'] = sitename
out['size'] = args.png_size
plot_template = NTPViz.Common + """\
set terminal png size %(size)s
set title "%(sitename)s: Local Temperatures"
set ytics format "%(fmt)s °C" nomirror textcolor rgb '#0060ad'
set style line 1 lc rgb '#0060ad' lt 1 lw 1 pt 7 ps 0 # --- blue
set key top right
plot \\
""" % out
for key in tempslist:
out['key'] = key
plot_template += "'-' using 1:2 title '%(key)s' with line, \\\n" \
% out
# strip the trailing ", \n"
plot_template = plot_template[:-4] + "\n"
exp = """\
<p>Local temperatures. These will be site specific depending on what
temperature sensors you have and collect data from.
Temperature changes affect the local clock crystal frequency and
stability. The math of how temperature changes frequency is
complex, and also depends on crystal aging. So there is no easy
way to correct for it in software. This the single most important
component of frequency drift.</p>
<p>The Local Termperatures are from field 3 from the tempstats log file.</p>
"""
ret = {'html': exp, 'stats': stats}
ret['title'] = "Local Temperatures"
ret['plot'] = plot_template + plot_data
return ret
def local_gps_gnuplot(self):
"Generate gnuplot code graphing local GPS statistics"
sitename = self.sitename
gpsmap = self.gpssplit()
gpslist = list(gpsmap.keys())
gpslist.sort()
if not len(gpsmap) or not len(gpslist):
if 1 <= args.debug_level:
sys.stderr.write("ntpviz: INFO: no GPS data to graph\n")
return ''
# build the output dictionary, because Python can not format
# complex objects.
gps_data = ()
values_nsat = []
values_tdop = []
plot_data = ""
for key in gpslist:
# fields: time, TDOP, nSats
(ps, values_tdop, values_nsat) = self.plot_slice(gpsmap[key], 3, 4)
plot_data += ps
stats = VizStats(values_nsat, "nSats", units='nSat')
stats_tdop = VizStats(values_tdop, "TDOP", units=' ')
out = stats_tdop.percs
out['sitename'] = sitename
out['size'] = args.png_size
if out['min_y'] == out['max_y']:
# some GPS always output the same TDOP
if 0 == out['min_y']:
# scale 0:1
out['max_y'] = 1
else:
# scale +/- 20%
out['min_y'] = out['max_y'] * 0.8
out['max_y'] = out['max_y'] * 1.2
elif 2 > out['min_y']:
# scale 0:max_x
out['min_y'] = 0
# recalc fmt
out['fmt'] = gnuplot_fmt(out["min_y"], out["max_y"])
plot_template = NTPViz.Common + """\
set terminal png size %(size)s
set title "%(sitename)s: Local GPS%(clipped)s
set ytics format "%(fmt)s TDOP" nomirror textcolor rgb '#0060ad'
set yrange [%(min_y)s:%(max_y)s]
set y2tics format "%%2.0f nSat" nomirror textcolor rgb '#dd181f'
set style line 1 lc rgb '#0060ad' lt 1 lw 1 pt 7 ps 0 # --- blue
set style line 2 lc rgb '#dd181f' lt 1 lw 1 pt 5 ps 0 # --- red
set key top right
plot \\
""" % out
for key in gpslist:
plot_template += """\
'-' using 1:2 title '%(key)s TDOP' with line ls 1, \\
'-' using 1:3 title '%(key)s nSat' with line ls 2 axis x1y2, \\
""" % locals()
# strip the trailing ", \\n"
plot_template = plot_template[:-4] + "\n"
exp = """\
<p>Local GPS. The Time Dilution of Precision (TDOP) is plotted in blue.
The number of visible satellites (nSat) is plotted in red.</p>
<p>TDOP is field 3, and nSats is field 4, from the gpsd log file. The
gpsd log file is created by the ntploggps program.</p>
<p>TDOP is a dimensionless error factor. TDOP ranges from 1 to greater
than 20. 1 denotes the highest possible confidence level. 2 to 5 is good.
Greater than 20 means there will be significant inaccuracy and error.</p>
"""
ret = {'html': VizStats.table_head + stats.table +
stats_tdop.table + VizStats.table_tail + exp,
'stats': [stats, stats_tdop],
'title': "Local GPS",
'plot': plot_template + plot_data + plot_data}
return ret
def local_error_gnuplot(self):
"Plot the local clock frequency error."
if not len(self.loopstats):
sys.stderr.write("ntpviz: WARNING: no loopstats to graph\n")
return ''
# grab and sort the values, no need for the timestamp, etc.
# speed up by only sending gnuplot the data it will actually use
# fields: time, freq error
(plot_data, values) = self.plot_slice(self.loopstats, 3)
# compute frequency offset
stats = VizStats(values, "Local Clock Frequency Offset", freq=1,)
# build the output dictionary, because Python can not format
# complex objects.
out = stats.percs
out["fmt"] = stats.percs["fmt"]
out["sitename"] = self.sitename
out['size'] = args.png_size
plot_template = NTPViz.Common + """\
set terminal png size %(size)s
set title "%(sitename)s: Local Clock Frequency Offset%(clipped)s"
set ytics format "%(fmt)s %(unit)s" nomirror
set yrange [%(min_y)s:%(max_y)s]
set key bottom right
set style line 1 lc rgb '#0060ad' lt 1 lw 1 pt 7 ps 0 # --- blue
set style line 2 lc rgb '#dd181f' lt 1 lw 1 pt 5 ps 0 # --- red
plot \
"-" using 1:($2 * %(multiplier)s) title "local clock error" \
with linespoints ls 2, \
%(p99)s title "99th percentile", \
%(p95)s title "95th percentile", \
%(p5)s title "5th percentile", \
%(p1)s title "1st percentile"
""" % out
exp = """\
<p>This shows the frequency offset of the local clock (aka drift). The
graph includes percentile data to show how much the frequency changes
over a longer period of time. The majority of this change should come
from temperature changes (ex: HVAC, the weather, CPU usage causing local
heating).</p>
<p>Smaller changes are better. An ideal result would be a horizontal
line at 0ppm. Expected values of 99%-1% percentiles: 0.4ppm</p>
<p>The Frequency Offset comes from field 4 of the loopstats log file.</p>
"""
ret = {'html': VizStats.table_head + stats.table +
VizStats.table_tail + exp,
'plot': plot_template + plot_data,
'stats': [stats],
'title': "Local Clock Frequency Offset"}
return ret
def loopstats_gnuplot(self, fld, title, legend, freq):
"Generate gnuplot code of a given loopstats field"
if not len(self.loopstats):
sys.stderr.write("ntpviz: WARNING: no loopstats to graph\n")
return ''
# speed up by only sending gnuplot the data it will actually use
# fields: time, fld
(plot_data, values) = self.plot_slice(self.loopstats, fld)
# process the values
stats = VizStats(values, title, freq=freq)
# build the output dictionary, because Python can not format
# complex objects.
out = stats.percs
out["fld"] = fld
out["fmt"] = stats.percs["fmt"]
out["legend"] = legend
out["min_y"] = '0'
out["sitename"] = self.sitename
out['size'] = args.png_size
if freq:
exp = """\
<p>This shows the RMS Frequency Jitter (aka wander) of the local
clock's frequency. In other words, how fast the local clock changes
frequency.</p>
<p>Lower is better. An ideal clock would be a horizontal line at
0ppm.</p>
<p> RMS Frequency Jitter is field 6 in the loopstats log file.</p>
"""
else:
exp = """\
<p>This shows the RMS Jitter of the local clock offset. In other words,
how fast the local clock offset is changing.</p>
<p>Lower is better. An ideal system would be a horizontal line at 0μs.</p>
<p>RMS jitter is field 5 in the loopstats log file.</p>
"""
plot_template = NTPViz.Common + """\
set terminal png size %(size)s
set title "%(sitename)s: %(title)s%(clipped)s"
set ytics format "%(fmt)s %(unit)s" nomirror
set yrange [%(min_y)s:%(max_y)s]
set key top right
set style line 1 lc rgb '#0060ad' lt 1 lw 1 pt 7 ps 0 # --- blue
set style line 2 lc rgb '#dd181f' lt 1 lw 1 pt 5 ps 0 # --- red
plot \
"-" using 1:($2*%(multiplier)s) title "%(legend)s" with linespoints ls 1, \
%(p99)s title "99th percentile", \
%(p95)s title "95th percentile", \
%(p5)s title "5th percentile", \
%(p1)s title "1st percentile"
""" % out
ret = {'html': VizStats.table_head + stats.table +
VizStats.table_tail + exp,
'plot': plot_template + plot_data,
'stats': [stats],
'title': title}
return ret
def local_offset_jitter_gnuplot(self):
"Generate gnuplot code of local clock loop standard deviation"
return self.loopstats_gnuplot(4, "Local RMS Time Jitter", "Jitter", 0)
def local_offset_stability_gnuplot(self):
"Generate gnuplot code graphing local clock stability"
return self.loopstats_gnuplot(5, "Local RMS Frequency Jitter",
"Stability", 1)
def peerstats_gnuplot(self, peerlist, fld, title, type):
"Plot a specified field from peerstats."
peerdict = self.peersplit()
if not peerlist:
peerlist = list(peerdict.keys())
if not len(peerlist):
sys.stderr.write("ntpviz: WARNING: no peer data to graph\n")
return ''
peerlist.sort() # For stability of output
namelist = [] # peer names
ip_todo = []
for key in peerlist:
# Trickiness - we allow peerlist elements to be DNS names.
# The socket.gethostbyname() call maps DNS names to IP addresses,
# passing through literal IPv4 addresses unaltered. However,
# it barfs on either literal IPv6 addresses or refclock names.
try:
ip = socket.gethostbyname(key)
namelist.append(key)
except:
# ignore it
ip = key
# socket.getfqdn() is also flakey...
namelist.append(socket.getfqdn(key))
if ip in peerdict:
ip_todo.append(ip)
else:
# can this ever happen?
sys.stderr.write("ntpviz: ERROR: No such peer as %s" % key)
raise SystemExit(1)
rtt = 0
percentages = ""
stats = []
if len(peerlist) == 1:
# only one peer
if "offset" == type:
# doing offset, not jitter
rtt = 1
if "127.127." == peerlist[0][:8]:
# don't do rtt for reclocks
rtt = 0
title = "Refclock Offset " + str(peerlist[0])
exp = """\
<p>This shows the offset of a local refclock in seconds. This is
useful to see how the measured offset is behaving.</p>
<p>Closer to 0s is better. An ideal system would be a horizontal line
at 0s. Typical 90%% ranges may be: local serial GPS 200 ms; local PPS
20µs.</p>
<p>Clock Offset is field 5 in the peerstats log file.</p>
"""
else:
title = "Peer Offset " + str(peerlist[0])
exp = """\
<p>This shows the offset of a peer or server in seconds. This is
useful to see how the measured offset is behaving.</p>
<p>The chart also plots offset±rtt. Where rtt is the round trip time
to the remote. NTP can not really know the offset of a remote chimer,
NTP computes it by subtracting rtt/2 from the offset. Plotting the
offset±rtt reverses this calculation to more easily see the effects of
rtt changes.</p>
<p>Closer to 0s is better. An ideal system would be a horizontal line
at 0s. Typical 90% ranges may be: local LAN peer 80µs; 90% ranges for
WAN servers may be 4ms and much larger. </p>
<p>Clock Offset is field 5 in the peerstats log file. The Round Trip
Time (rtt) is field 6 in the peerstats file.</p>
"""
else:
# doing jitter, not offset
if "127.127." == peerlist[0][:8]:
title = "Refclock RMS Jitter " + str(peerlist[0])
exp = """\
<p>This shows the RMS Jitter of a local refclock. Jitter is the
current estimated dispersion; the variation in offset between samples.</p>
<p>Closer to 0s is better. An ideal system would be a horizontal
line at 0s.</p>
<p>RMS Jitter is field 8 in the peerstats log file.</p>
"""
else:
title = "Peer Jitter " + str(peerlist[0])
exp = """\
<p>This shows the RMS Jitter of a remote peer or server. Jitter is
the current estimated dispersion; the variation in offset between
samples.</p>
<p>Closer to 0s is better. An ideal system would be a horizontal line
at 0s.</p>
<p>RMS Jitter is field 8 in the peerstats log file.</p>
"""
if len(namelist[0]) and peerlist[0] != namelist[0]:
# append hostname, if we have it
# after stats to keep summary short
title += " (%s)" % namelist[0]
else:
# many peers
title += "s"
if "offset" == type:
title = "Peer Offsets"
exp = """\
<p>This shows the offset of all refclocks, peers and servers.
This can be useful to see if offset changes are happening in
a single clock or all clocks together.</p>
<p>Clock Offset is field 5 in the peerstats log file.</p>
"""
else:
title = "Peer Jitters"
exp = """\
<p>This shows the RMS Jitter of all refclocks, peers and servers.
Jitter is the current estimated dispersion; the variation in offset
between samples.</p>
<p>Closer to 0s is better. An ideal system would be a horizontal line
at 0s.</p>
<p>RMS Jitter is field 8 in the peerstats log file.</p>
"""
if len(peerlist) == 1:
if peerlist[0] in refclock_name:
title += ' ' + refclock_name[peerlist[0]]
plot_data = ""
for ip in ip_todo:
# 20% speed up by only sending gnuplot the data it will
# actually use
if rtt:
# fields: time, fld, and rtt
(p, v1, v2) = self.plot_slice(peerdict[ip], fld, 5)
plot_data += p
else:
# fields: time, fld
(p, v1) = self.plot_slice(peerdict[ip], fld)
plot_data += p
stats = VizStats(v1, title)
if len(peerlist) == 1:
percentages = " %(p50)s title '50th percentile', " % stats.percs
else:
# skip stats on peers/offsets plots
stats.skip_summary = True
stats.table = ''
out = stats.percs
out['sitename'] = self.sitename
out['size'] = args.png_size
out['title'] = title
out["fmt"] = stats.percs["fmt"]
if 6 >= len(peerlist):
out['set_key'] = "set key top right"
elif 12 >= len(peerlist):
# getting crowded
out['set_key'] = "set key bmargin"
else:
# too many keys to show
out['set_key'] = "set key off"
plot_template = NTPViz.Common + """\
set terminal png size %(size)s
set title "%(sitename)s: %(title)s%(clipped)s"
set ylabel ""
set ytics format "%(fmt)s %(unit)s" nomirror
set yrange [%(min_y)s:%(max_y)s]
%(set_key)s
plot \
""" % out
plot_template += percentages
for key in peerlist:
out['label'] = self.ip_label(key)
plot_template += "'-' using 1:($2*%(multiplier)s) " \
" title '%(label)s' with line, \\\n" % out
if 1 == rtt:
plot_template += """\
'-' using 1:(($2+$3/2)*%(multiplier)s) title 'offset+rtt/2' with line, \\
'-' using 1:(($2-$3/2)*%(multiplier)s) title 'offset-rtt/2' with line
""" % stats.percs
# sadly, gnuplot needs 3 identical copies of the data.
plot_template += plot_data + plot_data
else:
# strip the trailing ", \n"
plot_template = plot_template[:-4] + "\n"
if len(peerlist) == 1:
# skip stats for multiplots
html = VizStats.table_head + stats.table \
+ VizStats.table_tail + exp,
else:
html = exp
ret = {'html': html,
'plot': plot_template + plot_data,
'stats': [stats],
'title': title}
return ret
def peer_offsets_gnuplot(self, peerlist=None):
return self.peerstats_gnuplot(peerlist, 4, "Peer Clock Offset",
"offset")
def peer_jitters_gnuplot(self, peerlist=None):
return self.peerstats_gnuplot(peerlist, 7, "Peer Clock Jitter",
"jitter")
def local_offset_histogram_gnuplot(self):
"Plot a histogram of clock offset values from loopstats."
if not len(self.loopstats):
sys.stderr.write("ntpviz: WARNING: no loopstats to graph\n")
return ''
# TODO normalize to 0 to 100?
# grab and sort the values, no need for the timestamp, etc.
values = [float(row[2]) for row in self.loopstats]
stats = VizStats(values, 'Local Clock Offset')
out = stats.percs
out["fmt_x"] = stats.percs["fmt"]
out['sitename'] = self.sitename
# flip the axis
out['min_x'] = out['min_y']
out['max_x'] = out['max_y']
rnd1 = 7 # round to 100 ns boxes
out['boxwidth'] = 1e-7
# between -10us and 10us
if 1e-5 > stats.percs["p99"] and -1e-5 < stats.percs["p1"]:
# go to nanosec
rnd1 = 9 # round to 1 ns boxes
out['boxwidth'] = S_PER_NS
# Python 2.6 has no collections.Counter(), so fake it.
cnt = collections.defaultdict(int)
for value in values:
# put into buckets
# for a +/- 50 microSec range that is 1,000 buckets to plot
cnt[round(value, rnd1)] += 1
sigma = True
if args.clip:
if stats.percs['p1sigma'] > stats.percs['p99'] or \
stats.percs['m1sigma'] < stats.percs['p1']:
# sigma out of range, do not plot
sigma = ''
out['sigma'] = ''
if sigma:
# plus/minus of one sigma range
out['sigma'] = """\
set style arrow 1 nohead
set linestyle 1 linecolor rgb "#009900"
set arrow from %(m1sigma)s,graph 0 to %(m1sigma)s,graph 0.90 as 1 ls 1
set arrow from %(p1sigma)s,graph 0 to %(p1sigma)s,graph 0.90 as 1 ls 1
set label 1 "-1σ" at %(m1sigma)s, graph 0.96 left front offset -1,-1 \
textcolor rgb "#009900"
set label 2 "+1σ" at %(p1sigma)s, graph 0.96 left front offset -1,-1 \
textcolor rgb "#009900"
""" % out
out['size'] = args.png_size
# in 2016, 25% of screens are 1024x768, 42% are 1388x768
# but leave some room for the browser frame
plot_template = '''\
set terminal png size %(size)s
set title "%(sitename)s: Local Clock Time Offset Histogram%(clipped)s"
set grid
set boxwidth %(boxwidth)s
set xtics format "%(fmt_x)s %(unit)s" nomirror
set xrange [%(min_x)s:%(max_x)s]
set yrange [0:*]
set style arrow 3 nohead
set arrow from %(p99)s,graph 0 to %(p99)s,graph 0.30 as 3
set style arrow 4 nohead
set arrow from %(p95)s,graph 0 to %(p95)s,graph 0.45 as 4
set style arrow 5 nohead
set arrow from %(p5)s,graph 0 to %(p5)s,graph 0.45 as 5
set style arrow 6 nohead
set arrow from %(p1)s,graph 0 to %(p1)s,graph 0.30 as 6
set key off
set lmargin 10
set rmargin 10
set style fill solid 0.5
set label 3 "99%%" at %(p99)s, graph 0.35 left front offset -1,-1
set label 4 "95%%" at %(p95)s, graph 0.50 left front offset -1,-1
set label 5 "1%%" at %(p1)s, graph 0.35 left front offset -1,-1
set label 6 "5%%" at %(p5)s, graph 0.50 left front offset -1,-1
%(sigma)s
plot \
"-" using ($1 * %(multiplier)s):2 title "histogram" with boxes
''' % out
histogram_data = ["%s %s\n" % (k, v) for k, v in cnt.items()]
exp = """\
<p>This shows the clock offsets of the local clock as a histogram.</p>
<p>The Local Clock Offset is field 3 from the loopstats log file.</p>
"""
# don't return stats, it's just a dupe
ret = {'html': VizStats.table_head + stats.table +
VizStats.table_tail + exp,
'plot': plot_template + "".join(histogram_data) + "e\n",
'stats': [],
'title': "Local Clock Time Offset Histogram"}
return ret
# Multiplotting can't live inside NTPViz because it consumes a list
# of such objects, not a single one.
def local_offset_multiplot(statlist):
"Plot comparative local offsets for a list of NTPViz objects."
out = []
out['size'] = args.png_size
plot = NTPViz.Common + '''\
set terminal png size %(size)s
set title "Multiplot Local Clock Offsets"
set ytics format "%1.2f μs" nomirror textcolor rgb "#0060ad"
set key bottom right box
plot \\
''' % out
# FIXME: probably need to be more flexible about computing the plot label
sitenames = [os.path.basename(os.path.dirname(d)) for d in args.statsdirs]
for (i, stats) in enumerate(statlist):
plot += '"-" using 1:($2*1000000) title "%s clock offset μs" ' \
'with linespoints, \\\n' % (sitenames[i])
plot = plot[:-4] + "\n"
plot_data = ''
for stats in statlist:
# speed up by only sending gnuplot the data it will actually use
# fields: time, offset
(p, v) = NTPViz.plot_slice(stats.loopstats, 2)
plot_data += p
ret = {'html': '', 'stats': []}
ret['title'] = "Multiplot"
ret['plot'] = plot + plot_data
return ret
# here is how to create the base64 from an image file:
# with open("path/to/file.png", "rb") as f:
# data = f.read()
# print data.encode("base64")
#
ntpsec_logo = """
iVBORw0KGgoAAAANSUhEUgAAAEAAAABKCAQAAACh+5ozAAAABGdBTUEAALGPC/xhBQAAAAFzUkdC
AK7OHOkAAAAgY0hSTQAAeiYAAICEAAD6AAAAgOgAAHUwAADqYAAAOpgAABdwnLpRPAAAAAJiS0dE
AP7wiPwpAAAACXBIWXMAAAsTAAALEwEAmpwYAAAFKElEQVRo3s2ZT0wcVRzHPzMLKCwsNgqLkYPS
xBjbRF3TcKlC4VAhFU0AdRN7a+zBEsUEL0qImqoxMTWhBzEkTdqmREhMCgpeiiV6KVE46MVE1KQg
uxv/df81tLvzPOzsMjs7sztvd7b4ndPsfPf3vu/33vv93vs9yGCIJMLyWaKJXTSxZMMTCITilJ1k
KENRdeoB6rHGYboNb80cpAjEQZoNr90ctiHWcyBfgD0aCZTk2CFAYylKTd7bVZYNknycwGf5ryjT
RE2/OWVr9Bh9ahbwnuGtnRdsTZ5h0/Rbhr1PDYhNUZyt2guwRjdazi8+G0lZeMWoeExna3mzxwbO
BDgwlIWQYhefhCkSNl8SpCpkO/JAiHFO00D+kCokGa8JpRyylSTjIlSeAPiC7/AU/JomknLM9qRb
Ijv8XaaANNs4hyU7VcJE6UBUZeR7wLjgqgXT4jQL6JYw5Qqy/U3e6YazLWY9cJ5DDOc+/kvU9aHQ
8HFP7m2O8/kCwoyQYgAvAD8xwja1rjUugA7e15NzgnlGCRfSvATZII1A4yv1KIqL/R/iF9IIBCGC
itfOtEoHs/qeJURQ90elaGOCbQSCtLKhDOd/LJTiZ1KfDXGW+aFiP2h00o8CJJhX3m75PabdLMZX
jIrdfIq6vhDDhFxtfkV9xtqXlrmgjltzHGIMSBMhXcEAeGjFAyxrX1sTLAXcAvTsHuE5tixjgga6
NA92OUXjAS5zfzGFpXZEabb5w7Jn99LMAI3EmecGf9n4SS3lPydbskKjD3GcIM3ch4c0Y9xghgv8
hiZvrBwBg3zIgwj+1FN9LfsZ52Uu8ikhWWPyAoY5Swu/coEZYmio+DhGD31M8CgjViG2PEwgEFyn
3dR8GMEsHahAF+/SBezGjkums1A71xEIJtwR0K837zdwdk0HiRNnQE6ATNL1cpJWFjll4+YF5vFy
Qi6DyAhop5MkU0Rsvsd5hzC99FZLwAB+NlktwtjkGg08US0BDcDlogstwRoQkBkE2WVYePw6ondD
ZZUFAALssz2mVSwgHzFCPMwjAHhoY1HehKyAAF5D76aZNXyL6nF/jX+qI2CdJJ2087Ohyfw6iZcA
sOZ8AOQm4Sqb+HmpCKOXXhKsS9iUEhDiEnCc/TbfWzmJlytcqZYAuMgG+/kgF4qN8HOWfiJMyQxA
MRRLRoscy0s62e18GNOmu3QukF0Fc8AkfTzFN6zwJXEET9LF83QQ4RRz7vTe3gOg0McCMQQpQmyx
RRRBnAX6LPa9rnsABEt8yxG6eFavC8dZYYqrxMvpZ3mRMM4Ci3ycqwhFC+qmVRYAsvWjsgX4GC2/
d5SurNoK8Oo1ch9vuNFP+XN2kJjLR9Nh64asPNDEa7xKIxVNLgN8+PAzCVZRwurEGuQzGoEwr7Ni
USmVQ5ouPsFPpgzkIFBlD+a2TpOF6txmPtXVMpkTCZ5d2jaDblaoABjUqy4mCcZ2+jlHK3CTt/gc
xdUqmUDwIqepBzY4ykahgFbO0Q9AirCp6u8OFPz6qpvhlcLMMeZ6Wcr+iSu5E+TuTGvIyqzuA4BX
5E5P5kAUrZuucSP42CDl2zHdLhYI2DmzsylhURYFd5F7fmOy5wJqaFbb7h5Q65PdGoDvrtEqz4HM
APTUfn97HZW4whKPKy14sgvf9QhoQi7ARImi8KNSlZAjgewqcCfzy0DfrGUFTPORi1c0pXGbNzOb
vV0PuFZgdAjd4/+DZZjBnbgzNSJ3f7rnq0AltrcCPMR4mro9a3/9Pwl2Z1Rsm9zNAAAAJXRFWHRk
YXRlOmNyZWF0ZQAyMDE1LTA2LTI5VDE4OjMwOjA3LTA0OjAwZxkj2wAAACV0RVh0ZGF0ZTptb2Rp
ZnkAMjAxNS0wNi0yOVQxODozMDowNy0wNDowMBZEm2cAAAAASUVORK5CYII=
"""
ntpsec_ico = """\
AAABAAEAEBAAAAEAIABoBAAAFgAAACgAAAAQAAAAIAAAAAEAIAAAAAAAAAQAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA/wAAAP8AAAD/AAAA/wAAAP8AAAD/AAAA/wAAAP8AAAD/AAAA/wAAAP8AAAD/
AAAA/wAAAP8AAAD/AAAAAAAAAP+fn59gn5+fYJ+fn2Cfn59gn5+fYJ+fn2Cfn59gn5+fYJ+fn2Cf
n59gn5+fYJ+fn2B/f39/AAAA/wAAAAAAAAAAAAAA/5+fn2Cfn59gn5+fYJ+fn2Cfn59gn5+fYJ+f
n2Cfn59gn5+fYJ+fn2Cfn59gAAAA/wAAAAAAAAAAAAAAAAAAAP8AAAD/AAAA/wAAAP8AAAD/AAAA
/wAAAP8AAAD/AAAA/wAAAP8AAAD/AAAA/wAAAP8AAAAAAAAAAAAAAAAAAAAAAAAA/5+fn2Cfn59g
n5+fYJ+fn2Cfn59gn5+fYJ+fn2Cfn59gn5+fYAAAAP8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+f
n59gn5+fYAAAAP8AAAD/AAAA/wAAAP8AAAD/n5+fYJ+fn2AAAAD/AAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAD/n5+fYAAAAP8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+fn59gAAAA/wAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA/5+fn2AAAAD/AAAAAAAAAAAAAAD/AAAA/01NTWAAAAD/n5+fYAAAAP8AAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAP+fn59gAAAA/wAAAAAAAAAAAAAA/wAAAAAAAAAAAAAA/5+fn2AA
AAD/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/n5+fYAAAAP8AAAAAAAAAAE1NTWAAAAAAAAAAAAAA
AP+fn59gAAAA/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/5+fn2Cfn59gAAAA/wAAAP8AAAD/AAAA
/wAAAP+fn59gn5+fYAAAAP8AAAAAAAAAAAAAAAAAAAAAAAAAAAEBAf+fn59gn5+fYJ+fn2Cfn59g
n5+fYJ+fn2Cfn59gn5+fYJ+fn2AAAAD/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/AAAA/wAAAP8A
AAD/AAAA/wAAAP8AAAD/AAAA/wAAAP8AAAD/AAAA/wAAAAAAAAAAAAAAAAAAAAAAAAD/AAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/AAAAAAAAAAAAAAAAAAAA
/wAAAAAAAAD/AAAA/wAAAP8AAAAAAAAAAAAAAAAAAAD/AAAA/wAAAP8AAAAAAAAA/wAAAAAAAAAA
AAAAAAAAAP8AAAD/AAAA/wAAAAAAAAD/AAAA/wAAAP8AAAD/AAAA/wAAAAAAAAD/AAAA/wAAAP8A
AAAAgAAAAL/+AADf/QAAwAEAAO/7AADsGwAA6+sAAOsrAADrawAA6+sAAOwbAADv+wAA4AMAAN/9
AADRxQAAxBEAAA==
"""
if __name__ == '__main__':
parser = MyArgumentParser(description="ntpd stats visualizer",
fromfile_prefix_chars='@',
epilog="""
You can place command line options in a file, one per line.
See the manual page for details.
Python by ESR, concept and gnuplot code by Dan Drown.
""")
group = parser.add_mutually_exclusive_group()
parser.add_argument('-c', '--clip',
action="store_true",
dest='clip',
help="Clip plots at 1%% and 99%%")
parser.add_argument('-d', '--datadir',
default="/var/log/ntpstats",
dest='statsdirs',
help="one or more logfile directories to read",
type=str)
parser.add_argument('-e', '--endtime',
dest='endtime',
help="End time in POSIX (seconds) or ISO 8601",
type=str)
parser.add_argument('-g', '--generate',
action="store_true",
dest='generate',
help="Run plot through gnuplot to make png")
parser.add_argument('-n', '--name',
default=socket.getfqdn(),
dest='sitename',
help="sitename (title)",
type=str)
parser.add_argument('-o', '--outdir',
default="ntpgraphs",
dest='outdir',
help="output directory",
type=str)
parser.add_argument('-p', '--period',
default=7, # default to 7 days
dest='period',
help="period in days to graph (float)",
type=float)
parser.add_argument('-s', '--starttime',
dest='starttime',
help="Start time in POSIX (seconds) or ISO 8601",
type=str)
parser.add_argument('-w', '--width',
choices=['s', 'm', 'l'],
default='m',
dest='width',
help="PNG width: s, m, or l",
type=str)
group.add_argument('--all-peer-jitters',
action="store_true",
dest='show_peer_jitters',
help="Plot all peer jitters")
group.add_argument('--peer-jitters',
default='',
dest='peer_jitters',
help="Plot peer jitters. Comma separated host list.",
type=str)
group.add_argument('--all-peer-offsets',
action="store_true",
dest='show_peer_offsets',
help="Plot all peer offsets")
group.add_argument('--peer-offsets',
default='',
dest='peer_offsets',
help="Plot peer offsets. Comma separated host list.",
type=str)
group.add_argument('--local-error',
action="store_true",
dest='show_local_error',
help="Plot local clock frequency offsets")
group.add_argument('--local-freq-temps',
action="store_true",
dest='show_freq_temps',
help="Plot local frequency vs temperature data")
group.add_argument('--local-gps',
action="store_true",
dest='show_gps',
help="Plot gpsd TDOP and nSats")
group.add_argument('--local-jitter',
action="store_true",
dest='show_local_jitter',
help="Plot clock time jitter")
group.add_argument('--local-offset',
action="store_true",
dest='show_local_offset',
help="Plot Clock frequency offset")
group.add_argument('--local-offset-histogram',
action="store_true",
dest='show_local_offset_histogram',
help="Plot histogram of loopstats time offsets")
group.add_argument('--local-offset-multiplot',
action="store_true",
dest='show_local_offset_multiplot',
help="Plot comparative local offsets for "
"multiple directories")
group.add_argument('--local-stability',
action="store_true",
dest='show_local_stability',
help="Plot RMS frequency-jitter")
group.add_argument('--local-temps',
action="store_true",
dest='show_temps',
help="Plot local temperature data")
parser.add_argument('-D', '--debug',
default=0,
dest='debug_level',
help="debug level, 0 (none) to 9 (most)",
type=int)
# some OS do not support os.nice()
try:
os.nice(0)
parser.add_argument('-N', '--nice',
action="store_true",
dest='nice',
help="Run as lowest priority")
except:
pass
parser.add_argument('-V', '--version',
action="version",
version="ntpviz %s" % ntp.util.stdversion())
args = parser.parse_args()
if args.nice:
# run at lowest possible priority
nice = os.nice(19)
if args.debug_level:
sys.stderr.write("ntpviz: INFO: Now running at nice %s\n" % nice)
if 's' == args.width:
# fit in 1024x768 browser
# in 2016 this is 22% of all browsers
args.png_size = '1000,720'
elif 'l' == args.width:
# fit in 1920x1080 browser
args.png_size = '1850,1000'
else:
# fit in 1388x768 browser
# in 2016 this is 42% of all browsers
args.png_size = '1340,720'
args.period = int(float(args.period) * ntp.statfiles.NTPStats.SecondsInDay)
if args.endtime is not None:
args.endtime = ntp.statfiles.iso_to_posix(args.endtime)
if args.starttime is not None:
args.starttime = ntp.statfiles.iso_to_posix(args.starttime)
args.statsdirs = [os.path.expanduser(path)
for path in args.statsdirs.split(",")]
if args.show_peer_offsets is True:
args.show_peer_offsets = []
elif 0 < len(args.peer_offsets):
args.show_peer_offsets = args.peer_offsets.split(",")
else:
args.show_peer_offsets = None
if args.show_peer_jitters is True:
args.show_peer_jitters = []
elif 0 < len(args.peer_jitters):
args.show_peer_jitters = args.peer_jitters.split(",")
else:
args.show_peer_jitters = None
if 0 < args.debug_level:
sys.stderr.write("ntpviz: INFO: now running at debug: %s\n" %
args.debug_level)
sys.stderr.write("ntpviz: INFO: Version: %s\n" % ntp.util.stdversion())
sys.stderr.write("ntpviz: INFO: Parsed Options %s\n" % args)
if 9 == args.debug_level:
# crazy debug, also profile
import cProfile
pr = cProfile.Profile()
pr.enable()
# register to dump debug on all normal exits
atexit.register(print_profile)
nice = 19 # always run nicely
if 0 != nice:
try:
import psutil
# set ionice() to idle
p = psutil.Process(os.getpid())
p.ionice(psutil.IOPRIO_CLASS_IDLE)
except ImportError:
if 0 < args.debug_level:
sys.stderr.write("ntpviz: INFO: psutil not found\n")
pass
# set nice()
nice = os.nice(nice)
if 2 < args.debug_level:
sys.stderr.write("ntpviz: INFO: now running at nice: %s\n" % nice)
for fontpath in ("/usr/share/fonts/liberation",
"/usr/share/fonts/liberation-fonts",
"/usr/share/fonts/truetype/liberation"):
if os.path.exists(fontpath):
os.environ["GDFONTPATH"] = fontpath
break
else:
sys.stderr.write(
"ntpviz: WARNING: liberation truetype fonts not found\n")
os.environ["GNUPLOT_DEFAULT_GDFONT"] = "LiberationSans-Regular"
plot = None
if 1 == len(args.statsdirs):
statlist = [NTPViz(statsdir=args.statsdirs[0], sitename=args.sitename,
period=args.period, starttime=args.starttime,
endtime=args.endtime)]
else:
statlist = [NTPViz(statsdir=d, sitename=d,
period=args.period, starttime=args.starttime,
endtime=args.endtime)
for d in args.statsdirs]
if len(statlist) == 1:
stats = statlist[0]
if args.show_local_offset or \
args.show_local_error or \
args.show_local_jitter or \
args.show_local_stability or \
args.show_local_offset_histogram:
if not len(stats.loopstats):
sys.stderr.write("ntpviz: ERROR: missing loopstats data\n")
raise SystemExit(1)
if args.show_local_offset:
plot = stats.local_offset_gnuplot()
elif args.show_local_error:
plot = stats.local_error_gnuplot()
elif args.show_local_jitter:
plot = stats.local_offset_jitter_gnuplot()
elif args.show_local_stability:
plot = stats.local_offset_stability_gnuplot()
elif args.show_local_offset_histogram:
plot = stats.local_offset_histogram_gnuplot()
if args.show_peer_offsets is not None or \
args.show_peer_jitters is not None:
if not len(stats.peerstats):
sys.stderr.write("ntpviz: ERROR: missing peerstats data\n")
raise SystemExit(1)
if args.show_peer_offsets is not None:
plot = stats.peer_offsets_gnuplot(args.show_peer_offsets)
if args.show_peer_jitters is not None:
plot = stats.peer_jitters_gnuplot(args.show_peer_jitters)
if args.show_freq_temps:
if not len(stats.temps):
sys.stderr.write("ntpviz: ERROR: missing temps data\n")
raise SystemExit(1)
plot = stats.local_freq_temps_plot()
if args.show_temps:
if not len(stats.temps):
sys.stderr.write("ntpviz: ERROR: missing temps data\n")
raise SystemExit(1)
plot = stats.local_temps_gnuplot()
if args.show_gps:
if not len(stats.gpsd):
sys.stderr.write("ntpviz: ERROR: missing gps data\n")
raise SystemExit(1)
plot = stats.local_gps_gnuplot()
if args.show_local_offset_multiplot:
plot = local_offset_multiplot(statlist)
if plot is not None:
# finish up the plot, and exit
if args.generate:
gnuplot(plot['plot'])
else:
sys.stdout.write(plot['plot'])
raise SystemExit(0)
# Fall through to HTML code generation
if not os.path.isdir(args.outdir):
try:
os.mkdir(args.outdir)
except SystemError:
sys.stderr.write("ntpviz: ERROR: %s can't be created.\n"
% args.outdir)
raise SystemExit(1)
# if no ntpsec favicon.ico, write one.
ico_filename = os.path.join(args.outdir, "favicon.ico")
if not os.path.lexists(ico_filename):
with open(ico_filename, "wb") as wp:
wp.write(binascii.a2b_base64(ntpsec_ico))
# if no ntpsec logo, write one.
logo_filename = os.path.join(args.outdir, "ntpsec-logo.png")
if not os.path.lexists(logo_filename):
with open(logo_filename, "wb") as wp:
wp.write(binascii.a2b_base64(ntpsec_logo))
# report_time = datetime.datetime.utcnow() # the time now is...
report_time = datetime.datetime.now(UTC()) # the time now is...
report_time = report_time.strftime("%c %Z") # format it nicely
title = args.sitename
index_header = '''\
<!DOCTYPE html>
<html lang="en">
<head>
<link rel="shortcut icon" href="favicon.ico">
<meta charset="UTF-8">
<meta http-equiv="refresh" content="1800">
<meta name="expires" content="0">
<title>%(title)s</title>
<style>
dt {
font-weight: bold;
margin-left: 20px;
}
dd {
margin-top: 4px;
margin-bottom: 10px;
}
.section {
color: #000000;
text-decoration: none;
.site-title:visited {
color: #000000; }
text-decoration: none;
}
</style>
</head>
<body>
<div style="width:910px">
<a href='https://www.ntpsec.org/'>
<img src="ntpsec-logo.png" alt="NTPsec" style="float:left;margin:20px 70px;">
</a>
<div>
<h1 style="margin-bottom:10px;">%(title)s</h1>
<b>Report generated:</b> %(report_time)s <br>
''' % locals()
# Ugh. Not clear what to do in the multiplot case
if len(statlist) == 1:
start_time = datetime.datetime.utcfromtimestamp(
stats.starttime).strftime('%c')
end_time = datetime.datetime.utcfromtimestamp(
stats.endtime).strftime('%c')
index_header += '<b>Start Time:</b> %s UTC<br>\n' \
'<b>End Time:</b> %s UTC<br>\n' \
% (start_time, end_time)
index_header += '<b>Report Period:</b> %1.1f days <br>\n' \
% (float(stats.period) /
float(ntp.statfiles.NTPStats.SecondsInDay))
if args.clip:
index_header += """\
<span style="color:red;font-weight:bold;">Warning: plots clipped</span><br>
"""
index_header += '</div>\n<div style="clear:both;"></div>'
index_trailer = '''\
<h2>Glossary:</h2>
<dl>
<dt>frequency offset:</dt>
<dd>The difference between the ntpd calculated frequency and the local
system clock frequency (usually in parts per million, ppm)</dd>
<dt>jitter, dispersion:</dt>
<dd>The short term change in a value. NTP measures Local Time Jitter,
Refclock Jitter, and Peer Jitter in seconds. Local Frequency Jitter is
in ppm or ppb.
</dd>
<dt>kurtosis, Kurt:</dt>
<dd>The kurtosis of a random variable X is the fourth standardized
moment and is a dimension-less ratio. ntpviz uses the Pearson's moment
coefficient of kurtosis. A normal distribution has a kurtosis of three.
NIST describes a kurtosis over three as "heavy tailed" and one under
three as "light tailed".</dd>
<dt>ms, millisecond:</dt>
<dd>One thousandth of a second = 0.001 seconds, 1e-3 seconds</dd>
<dt>mu, mean:</dt>
<dd>The arithmetic mean: the sum of all the values divided by the
number of values.
The formula for mu is: "mu = (∑x<sub>i</sub>) / N".
Where x<sub>i</sub> denotes the data points and N is the number of data
points.</dd>
<dt>ns, nanosecond:</dt>
<dd>One billionth of a second, also one thousandth of a microsecond,
0.000000001 seconds and 1e-9 seconds.</dd>
<dt>percentile:</dt>
<dd>The value below which a given percentage of values fall.</dd>
<dt>ppb, parts per billion:</dt>
<dd>Ratio between two values. These following are all the same:
1 ppb, one in one billion, 1/1,000,000,000, 0.000,000,001, 1e-9 and
0.000,000,1%</dd>
<dt>ppm, parts per million:</dt>
<dd>Ratio between two values. These following are all the same:
1 ppm, one in one million, 1/1,000,000, 0.000,001, and 0.000,1%</dd>
<dt>‰, parts per thousand:</dt>
<dd>Ratio between two values. These following are all the same:
1 ‰. one in one thousand, 1/1,000, 0.001, and 0.1%</dd>
<dt>refclock:</dt>
<dd>Reference clock, a local GPS module or other local source of time.</dd>
<dt>remote clock:</dt>
<dd>Any clock reached over the network, LAN or WAN. Also called a peer
or server.</dd>
<dt>time offset:</dt>
<dd>The difference between the ntpd calculated time and the local system
clock's time. Also called phase offset.</dd>
<dt>σ, sigma:</dt>
<dd>Sigma denotes the standard deviation (SD) and is centered on the
arithmetic mean of the data set. The SD is simply the square root of
the variance of the data set. Two sigma is simply twice the standard
deviation. Three sigma is three times sigma. Smaller is better.<br>
The formula for sigma is: "σ = √[ ∑(x<sub>i</sub>-mu)^2 / N ]".
Where x<sub>i</sub> denotes the data points and N is the number of data
points.</dd>
<dt>skewness, Skew:</dt>
<dd>The skewness of a random variable X is the third standardized
moment and is a dimension-less ratio. ntpviz uses the Pearson's moment
coefficient of skewness. Wikipedia describes it best: "The qualitative
interpretation of the skew is complicated and unintuitive."<br> A normal
distribution has a skewness of zero. </dd>
<dt>upstream clock:</dt>
<dd>Any remote clock or reference clock used as a source of time.</dd>
<dt>µs, us, microsecond:</dt>
<dd>One millionth of a second, also one thousandth of a millisecond,
0.000,001 seconds, and 1e-6 seconds.</dd>
</dl>
<br>
<br>
<br>
<div style="float:left">
This page autogenerated by
<a href="https://docs.ntpsec.org/latest/ntpviz.html">
ntpviz</a>, part of the <a href="https://www.ntpsec.org/">NTPsec project</a>
</div>
<div style="float:left;margin-left:350px;">
<a href="https://validator.w3.org/nu/">
<img src="https://www.w3.org/html/logo/downloads/HTML5_Logo_32.png"
alt="html 5">
</a>
<a href="https://jigsaw.w3.org/css-validator/check/referer">
<img style="border:0;width:88px;height:31px"
src="https://jigsaw.w3.org/css-validator/images/vcss"
alt="Valid CSS!" />
</a>
</div>
<div style="clear:both;"></div>
</div>
</body>
</html>
'''
imagewrapper = "<img src='%s.png' alt='%s plot'>\n"
# buffer the index.html output so the index.html is not empty
# during the run
index_buffer = index_header
# if header file, add it to index.html
header = os.path.join(args.outdir, "header")
if os.path.isfile(header):
try:
header_file = open(header, 'r', encoding='utf-8')
header_txt = header_file.read()
index_buffer += '<br>\n' + header_txt + '\n'
except IOError:
pass
if len(statlist) > 1:
index_buffer += local_offset_multiplot(statlist)
else:
# imagepairs in the order of the heml entries
imagepairs = [
("local-offset", stats.local_offset_gnuplot()),
# skipa next one, redundant to one above
# ("local-error", stats.local_error_gnuplot()),
("local-jitter", stats.local_offset_jitter_gnuplot()),
("local-stability", stats.local_offset_stability_gnuplot()),
("local-offset-histogram", stats.local_offset_histogram_gnuplot()),
("local-temps", stats.local_temps_gnuplot()),
("local-freq-temps", stats.local_freq_temps_plot()),
("local-gps", stats.local_gps_gnuplot()),
("peer-offsets", stats.peer_offsets_gnuplot()),
]
peerlist = list(stats.peersplit().keys())
# sort for output order stability
peerlist.sort()
for key in peerlist:
imagepairs.append(("peer-offset-" + key,
stats.peer_offsets_gnuplot([key])))
imagepairs.append(("peer-jitters",
stats.peer_jitters_gnuplot()))
for key in peerlist:
imagepairs.append(("peer-jitter-" + key,
stats.peer_jitters_gnuplot([key])))
stats = []
for (imagename, image) in imagepairs:
if not image:
continue
if 1 <= args.debug_level:
sys.stderr.write("ntpviz: plotting %s\n" % image['title'])
stats.append(image['stats'])
# give each H2 an unique ID.
id = image['title'].lower()
id = id.replace(' ', '_').replace(':', '_')
index_buffer += """\
<div id="%s">\n<h2><a class="section" href="#%s">%s</a></h2>
""" % (id, id, image['title'])
div_name = imagename.replace('-', ' ')
index_buffer += imagewrapper % \
(imagename.replace(':', '%3A'), div_name)
if image['html']:
index_buffer += "<div>\n%s</div>\n" % image['html']
index_buffer += "<br><br>\n"
gnuplot(image['plot'], os.path.join(args.outdir,
imagename + ".png"))
index_buffer += "</div>\n"
# dump stats
csvs = []
if True:
stats_to_output = {}
for stat in stats:
if [] == stat:
continue
for sta in stat:
if sta.skip_summary:
continue
# This removes duplicates
stats_to_output[sta.title] = sta
index_buffer += '<div id="Summary">\n' \
'<h2><a class="section" href="#Summary">Summary</a></h2>\n'
index_buffer += VizStats.table_head
for key in sorted(stats_to_output.keys()):
index_buffer += str(stats_to_output[key].table)
csvs.append(stats_to_output[key].csv)
# RFC 4180 specifies the mime-type of a csv: text/csv
# your webserver should be programmed the same
index_buffer += VizStats.table_tail
index_buffer += """\
<a href="summary.csv" target="_blank"
type="text/csv;charset=UTF-8;header=present">Summary as CSV file</a><br>
</div>
"""
# if footer file, add it to index.html
footer = os.path.join(args.outdir, "footer")
if os.path.isfile(footer):
try:
footer_file = open(footer, 'r', encoding='utf-8')
footer_txt = footer_file.read()
index_buffer += '<br>\n' + footer_txt + '\n'
except IOError:
pass
index_buffer += index_trailer
# and send the file buffer
index_filename = os.path.join(args.outdir, "index.html")
with open(index_filename + ".tmp", "w", encoding='utf-8') as ifile:
ifile.write(index_buffer)
# create csv file, as a tmp file
csv_filename = os.path.join(args.outdir, "summary.csv")
with open(csv_filename + ".tmp", "w", encoding='utf-8') as csv_file:
csv_ob = csv.writer(csv_file)
csv_ob.writerow(VizStats.csv_head)
for row in csvs:
csv_ob.writerow(row)
# move new index and summary into place
# windows python 2.7, 3.6 has no working rename, so delete and move
try:
os.remove(csv_filename)
os.remove(index_filename)
except:
pass
os.rename(csv_filename + ".tmp", csv_filename)
os.rename(index_filename + ".tmp", index_filename)
# end
|