This file is indexed.

/usr/x86_64-w64-mingw32/lib/ocaml/complex.mli is in ocaml-mingw-w64-x86-64 4.01.0~20140328-1build6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
(***********************************************************************)
(*                                                                     *)
(*                                OCaml                                *)
(*                                                                     *)
(*            Xavier Leroy, projet Cristal, INRIA Rocquencourt         *)
(*                                                                     *)
(*  Copyright 2002 Institut National de Recherche en Informatique et   *)
(*  en Automatique.  All rights reserved.  This file is distributed    *)
(*  under the terms of the GNU Library General Public License, with    *)
(*  the special exception on linking described in file ../LICENSE.     *)
(*                                                                     *)
(***********************************************************************)

(** Complex numbers.

    This module provides arithmetic operations on complex numbers.
    Complex numbers are represented by their real and imaginary parts
    (cartesian representation).  Each part is represented by a
    double-precision floating-point number (type [float]).   *)

type t = { re: float; im: float }
(** The type of complex numbers.  [re] is the real part and [im] the
    imaginary part. *)

val zero: t
(** The complex number [0]. *)

val one: t
(** The complex number [1]. *)

val i: t
(** The complex number [i]. *)

val neg: t -> t
(** Unary negation. *)

val conj: t -> t
(** Conjugate: given the complex [x + i.y], returns [x - i.y]. *)

val add: t -> t -> t
(** Addition *)

val sub: t -> t -> t
(** Subtraction *)

val mul: t -> t -> t
(** Multiplication *)

val inv: t -> t
(** Multiplicative inverse ([1/z]). *)

val div: t -> t -> t
(** Division *)

val sqrt: t -> t
(** Square root.  The result [x + i.y] is such that [x > 0] or
    [x = 0] and [y >= 0].
    This function has a discontinuity along the negative real axis. *)

val norm2: t -> float
(** Norm squared: given [x + i.y], returns [x^2 + y^2]. *)

val norm: t -> float
(** Norm: given [x + i.y], returns [sqrt(x^2 + y^2)]. *)

val arg: t -> float
(** Argument.  The argument of a complex number is the angle
    in the complex plane between the positive real axis and a line
    passing through zero and the number.  This angle ranges from
    [-pi] to [pi].  This function has a discontinuity along the
    negative real axis. *)

val polar: float -> float -> t
(** [polar norm arg] returns the complex having norm [norm]
    and argument [arg]. *)

val exp: t -> t
(** Exponentiation.  [exp z] returns [e] to the [z] power. *)

val log: t -> t
(** Natural logarithm (in base [e]). *)

val pow: t -> t -> t
(** Power function.  [pow z1 z2] returns [z1] to the [z2] power. *)