This file is indexed.

/usr/x86_64-w64-mingw32/lib/ocaml/map.ml is in ocaml-mingw-w64-x86-64 4.01.0~20140328-1build6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
(***********************************************************************)
(*                                                                     *)
(*                                OCaml                                *)
(*                                                                     *)
(*            Xavier Leroy, projet Cristal, INRIA Rocquencourt         *)
(*                                                                     *)
(*  Copyright 1996 Institut National de Recherche en Informatique et   *)
(*  en Automatique.  All rights reserved.  This file is distributed    *)
(*  under the terms of the GNU Library General Public License, with    *)
(*  the special exception on linking described in file ../LICENSE.     *)
(*                                                                     *)
(***********************************************************************)

module type OrderedType =
  sig
    type t
    val compare: t -> t -> int
  end

module type S =
  sig
    type key
    type +'a t
    val empty: 'a t
    val is_empty: 'a t -> bool
    val mem:  key -> 'a t -> bool
    val add: key -> 'a -> 'a t -> 'a t
    val singleton: key -> 'a -> 'a t
    val remove: key -> 'a t -> 'a t
    val merge:
          (key -> 'a option -> 'b option -> 'c option) -> 'a t -> 'b t -> 'c t
    val compare: ('a -> 'a -> int) -> 'a t -> 'a t -> int
    val equal: ('a -> 'a -> bool) -> 'a t -> 'a t -> bool
    val iter: (key -> 'a -> unit) -> 'a t -> unit
    val fold: (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b
    val for_all: (key -> 'a -> bool) -> 'a t -> bool
    val exists: (key -> 'a -> bool) -> 'a t -> bool
    val filter: (key -> 'a -> bool) -> 'a t -> 'a t
    val partition: (key -> 'a -> bool) -> 'a t -> 'a t * 'a t
    val cardinal: 'a t -> int
    val bindings: 'a t -> (key * 'a) list
    val min_binding: 'a t -> (key * 'a)
    val max_binding: 'a t -> (key * 'a)
    val choose: 'a t -> (key * 'a)
    val split: key -> 'a t -> 'a t * 'a option * 'a t
    val find: key -> 'a t -> 'a
    val map: ('a -> 'b) -> 'a t -> 'b t
    val mapi: (key -> 'a -> 'b) -> 'a t -> 'b t
  end

module Make(Ord: OrderedType) = struct

    type key = Ord.t

    type 'a t =
        Empty
      | Node of 'a t * key * 'a * 'a t * int

    let height = function
        Empty -> 0
      | Node(_,_,_,_,h) -> h

    let create l x d r =
      let hl = height l and hr = height r in
      Node(l, x, d, r, (if hl >= hr then hl + 1 else hr + 1))

    let singleton x d = Node(Empty, x, d, Empty, 1)

    let bal l x d r =
      let hl = match l with Empty -> 0 | Node(_,_,_,_,h) -> h in
      let hr = match r with Empty -> 0 | Node(_,_,_,_,h) -> h in
      if hl > hr + 2 then begin
        match l with
          Empty -> invalid_arg "Map.bal"
        | Node(ll, lv, ld, lr, _) ->
            if height ll >= height lr then
              create ll lv ld (create lr x d r)
            else begin
              match lr with
                Empty -> invalid_arg "Map.bal"
              | Node(lrl, lrv, lrd, lrr, _)->
                  create (create ll lv ld lrl) lrv lrd (create lrr x d r)
            end
      end else if hr > hl + 2 then begin
        match r with
          Empty -> invalid_arg "Map.bal"
        | Node(rl, rv, rd, rr, _) ->
            if height rr >= height rl then
              create (create l x d rl) rv rd rr
            else begin
              match rl with
                Empty -> invalid_arg "Map.bal"
              | Node(rll, rlv, rld, rlr, _) ->
                  create (create l x d rll) rlv rld (create rlr rv rd rr)
            end
      end else
        Node(l, x, d, r, (if hl >= hr then hl + 1 else hr + 1))

    let empty = Empty

    let is_empty = function Empty -> true | _ -> false

    let rec add x data = function
        Empty ->
          Node(Empty, x, data, Empty, 1)
      | Node(l, v, d, r, h) ->
          let c = Ord.compare x v in
          if c = 0 then
            Node(l, x, data, r, h)
          else if c < 0 then
            bal (add x data l) v d r
          else
            bal l v d (add x data r)

    let rec find x = function
        Empty ->
          raise Not_found
      | Node(l, v, d, r, _) ->
          let c = Ord.compare x v in
          if c = 0 then d
          else find x (if c < 0 then l else r)

    let rec mem x = function
        Empty ->
          false
      | Node(l, v, d, r, _) ->
          let c = Ord.compare x v in
          c = 0 || mem x (if c < 0 then l else r)

    let rec min_binding = function
        Empty -> raise Not_found
      | Node(Empty, x, d, r, _) -> (x, d)
      | Node(l, x, d, r, _) -> min_binding l

    let rec max_binding = function
        Empty -> raise Not_found
      | Node(l, x, d, Empty, _) -> (x, d)
      | Node(l, x, d, r, _) -> max_binding r

    let rec remove_min_binding = function
        Empty -> invalid_arg "Map.remove_min_elt"
      | Node(Empty, x, d, r, _) -> r
      | Node(l, x, d, r, _) -> bal (remove_min_binding l) x d r

    let merge t1 t2 =
      match (t1, t2) with
        (Empty, t) -> t
      | (t, Empty) -> t
      | (_, _) ->
          let (x, d) = min_binding t2 in
          bal t1 x d (remove_min_binding t2)

    let rec remove x = function
        Empty ->
          Empty
      | Node(l, v, d, r, h) ->
          let c = Ord.compare x v in
          if c = 0 then
            merge l r
          else if c < 0 then
            bal (remove x l) v d r
          else
            bal l v d (remove x r)

    let rec iter f = function
        Empty -> ()
      | Node(l, v, d, r, _) ->
          iter f l; f v d; iter f r

    let rec map f = function
        Empty ->
          Empty
      | Node(l, v, d, r, h) ->
          let l' = map f l in
          let d' = f d in
          let r' = map f r in
          Node(l', v, d', r', h)

    let rec mapi f = function
        Empty ->
          Empty
      | Node(l, v, d, r, h) ->
          let l' = mapi f l in
          let d' = f v d in
          let r' = mapi f r in
          Node(l', v, d', r', h)

    let rec fold f m accu =
      match m with
        Empty -> accu
      | Node(l, v, d, r, _) ->
          fold f r (f v d (fold f l accu))

    let rec for_all p = function
        Empty -> true
      | Node(l, v, d, r, _) -> p v d && for_all p l && for_all p r

    let rec exists p = function
        Empty -> false
      | Node(l, v, d, r, _) -> p v d || exists p l || exists p r

    (* Beware: those two functions assume that the added k is *strictly*
       smaller (or bigger) than all the present keys in the tree; it
       does not test for equality with the current min (or max) key.

       Indeed, they are only used during the "join" operation which
       respects this precondition.
    *)

    let rec add_min_binding k v = function
      | Empty -> singleton k v
      | Node (l, x, d, r, h) ->
        bal (add_min_binding k v l) x d r

    let rec add_max_binding k v = function
      | Empty -> singleton k v
      | Node (l, x, d, r, h) ->
        bal l x d (add_max_binding k v r)

    (* Same as create and bal, but no assumptions are made on the
       relative heights of l and r. *)

    let rec join l v d r =
      match (l, r) with
        (Empty, _) -> add_min_binding v d r
      | (_, Empty) -> add_max_binding v d l
      | (Node(ll, lv, ld, lr, lh), Node(rl, rv, rd, rr, rh)) ->
          if lh > rh + 2 then bal ll lv ld (join lr v d r) else
          if rh > lh + 2 then bal (join l v d rl) rv rd rr else
          create l v d r

    (* Merge two trees l and r into one.
       All elements of l must precede the elements of r.
       No assumption on the heights of l and r. *)

    let concat t1 t2 =
      match (t1, t2) with
        (Empty, t) -> t
      | (t, Empty) -> t
      | (_, _) ->
          let (x, d) = min_binding t2 in
          join t1 x d (remove_min_binding t2)

    let concat_or_join t1 v d t2 =
      match d with
      | Some d -> join t1 v d t2
      | None -> concat t1 t2

    let rec split x = function
        Empty ->
          (Empty, None, Empty)
      | Node(l, v, d, r, _) ->
          let c = Ord.compare x v in
          if c = 0 then (l, Some d, r)
          else if c < 0 then
            let (ll, pres, rl) = split x l in (ll, pres, join rl v d r)
          else
            let (lr, pres, rr) = split x r in (join l v d lr, pres, rr)

    let rec merge f s1 s2 =
      match (s1, s2) with
        (Empty, Empty) -> Empty
      | (Node (l1, v1, d1, r1, h1), _) when h1 >= height s2 ->
          let (l2, d2, r2) = split v1 s2 in
          concat_or_join (merge f l1 l2) v1 (f v1 (Some d1) d2) (merge f r1 r2)
      | (_, Node (l2, v2, d2, r2, h2)) ->
          let (l1, d1, r1) = split v2 s1 in
          concat_or_join (merge f l1 l2) v2 (f v2 d1 (Some d2)) (merge f r1 r2)
      | _ ->
          assert false

    let rec filter p = function
        Empty -> Empty
      | Node(l, v, d, r, _) ->
          (* call [p] in the expected left-to-right order *)
          let l' = filter p l in
          let pvd = p v d in
          let r' = filter p r in
          if pvd then join l' v d r' else concat l' r'

    let rec partition p = function
        Empty -> (Empty, Empty)
      | Node(l, v, d, r, _) ->
          (* call [p] in the expected left-to-right order *)
          let (lt, lf) = partition p l in
          let pvd = p v d in
          let (rt, rf) = partition p r in
          if pvd
          then (join lt v d rt, concat lf rf)
          else (concat lt rt, join lf v d rf)

    type 'a enumeration = End | More of key * 'a * 'a t * 'a enumeration

    let rec cons_enum m e =
      match m with
        Empty -> e
      | Node(l, v, d, r, _) -> cons_enum l (More(v, d, r, e))

    let compare cmp m1 m2 =
      let rec compare_aux e1 e2 =
          match (e1, e2) with
          (End, End) -> 0
        | (End, _)  -> -1
        | (_, End) -> 1
        | (More(v1, d1, r1, e1), More(v2, d2, r2, e2)) ->
            let c = Ord.compare v1 v2 in
            if c <> 0 then c else
            let c = cmp d1 d2 in
            if c <> 0 then c else
            compare_aux (cons_enum r1 e1) (cons_enum r2 e2)
      in compare_aux (cons_enum m1 End) (cons_enum m2 End)

    let equal cmp m1 m2 =
      let rec equal_aux e1 e2 =
          match (e1, e2) with
          (End, End) -> true
        | (End, _)  -> false
        | (_, End) -> false
        | (More(v1, d1, r1, e1), More(v2, d2, r2, e2)) ->
            Ord.compare v1 v2 = 0 && cmp d1 d2 &&
            equal_aux (cons_enum r1 e1) (cons_enum r2 e2)
      in equal_aux (cons_enum m1 End) (cons_enum m2 End)

    let rec cardinal = function
        Empty -> 0
      | Node(l, _, _, r, _) -> cardinal l + 1 + cardinal r

    let rec bindings_aux accu = function
        Empty -> accu
      | Node(l, v, d, r, _) -> bindings_aux ((v, d) :: bindings_aux accu r) l

    let bindings s =
      bindings_aux [] s

    let choose = min_binding

end