This file is indexed.

/usr/lib/ocaml/ephemeron.ml is in ocaml-nox 4.05.0-10ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
(**************************************************************************)
(*                                                                        *)
(*                                 OCaml                                  *)
(*                                                                        *)
(*             Damien Doligez, projet Para, INRIA Rocquencourt            *)
(*                                                                        *)
(*   Copyright 1997 Institut National de Recherche en Informatique et     *)
(*     en Automatique.                                                    *)
(*                                                                        *)
(*   All rights reserved.  This file is distributed under the terms of    *)
(*   the GNU Lesser General Public License version 2.1, with the          *)
(*   special exception on linking described in the file LICENSE.          *)
(*                                                                        *)
(**************************************************************************)

module type SeededS = sig
  include Hashtbl.SeededS
  val clean: 'a t -> unit
  val stats_alive: 'a t -> Hashtbl.statistics
    (** same as {!stats} but only count the alive bindings *)
end

module type S = sig
  include Hashtbl.S
  val clean: 'a t -> unit
  val stats_alive: 'a t -> Hashtbl.statistics
    (** same as {!stats} but only count the alive bindings *)
end

module GenHashTable = struct

  type equal =
  | ETrue | EFalse
  | EDead (** the garbage collector reclaimed the data *)

  module MakeSeeded(H: sig
    type t
    type 'a container
    val create: t -> 'a -> 'a container
    val hash: int -> t -> int
    val equal: 'a container -> t -> equal
    val get_data: 'a container -> 'a option
    val get_key: 'a container -> t option
    val set_key_data: 'a container -> t -> 'a -> unit
    val check_key: 'a container -> bool
  end) : SeededS with type key = H.t
  = struct

    type 'a t =
      { mutable size: int;                  (* number of entries *)
        mutable data: 'a bucketlist array;  (* the buckets *)
        mutable seed: int;                  (* for randomization *)
        initial_size: int;                  (* initial array size *)
      }

    and 'a bucketlist =
    | Empty
    | Cons of int (* hash of the key *) * 'a H.container * 'a bucketlist

    (** the hash of the key is kept in order to test the equality of the hash
      before the key. Same reason as for Weak.Make *)

    type key = H.t

    let rec power_2_above x n =
      if x >= n then x
      else if x * 2 > Sys.max_array_length then x
      else power_2_above (x * 2) n

    let prng = lazy (Random.State.make_self_init())

    let create ?(random = (Hashtbl.is_randomized ())) initial_size =
      let s = power_2_above 16 initial_size in
      let seed = if random then Random.State.bits (Lazy.force prng) else 0 in
      { initial_size = s; size = 0; seed = seed; data = Array.make s Empty }

    let clear h =
      h.size <- 0;
      let len = Array.length h.data in
      for i = 0 to len - 1 do
        h.data.(i) <- Empty
      done

    let reset h =
      let len = Array.length h.data in
      if len = h.initial_size then
        clear h
      else begin
        h.size <- 0;
        h.data <- Array.make h.initial_size Empty
      end

    let copy h = { h with data = Array.copy h.data }

    let key_index h hkey =
      hkey land (Array.length h.data - 1)

    let clean h =
      let rec do_bucket = function
        | Empty ->
            Empty
        | Cons(_, c, rest) when not (H.check_key c) ->
            h.size <- h.size - 1;
            do_bucket rest
        | Cons(hkey, c, rest) ->
            Cons(hkey, c, do_bucket rest)
      in
      let d = h.data in
      for i = 0 to Array.length d - 1 do
        d.(i) <- do_bucket d.(i)
      done

    (** resize is the only function to do the actual cleaning of dead keys
        (remove does it just because it could).

        The goal is to:

        - not resize infinitely when the actual number of alive keys is
        bounded but keys are continuously added. That would happen if
        this function always resize.
        - not call this function after each addition, that would happen if this
        function don't resize even when only one key is dead.

        So the algorithm:
        - clean the keys before resizing
        - if the number of remaining keys is less than half the size of the
        array, don't resize.
        - if it is more, resize.

        The second problem remains if the table reaches {!Sys.max_array_length}.

    *)
    let resize h =
      let odata = h.data in
      let osize = Array.length odata in
      let nsize = osize * 2 in
      clean h;
      if nsize < Sys.max_array_length && h.size >= osize lsr 1 then begin
        let ndata = Array.make nsize Empty in
        h.data <- ndata;       (* so that key_index sees the new bucket count *)
        let rec insert_bucket = function
            Empty -> ()
          | Cons(hkey, data, rest) ->
              insert_bucket rest; (* preserve original order of elements *)
              let nidx = key_index h hkey in
              ndata.(nidx) <- Cons(hkey, data, ndata.(nidx)) in
        for i = 0 to osize - 1 do
          insert_bucket odata.(i)
        done
      end

    let add h key info =
      let hkey = H.hash h.seed key in
      let i = key_index h hkey in
      let container = H.create key info in
      let bucket = Cons(hkey, container, h.data.(i)) in
      h.data.(i) <- bucket;
      h.size <- h.size + 1;
      if h.size > Array.length h.data lsl 1 then resize h

    let remove h key =
      let hkey = H.hash h.seed key in
      let rec remove_bucket = function
        | Empty -> Empty
        | Cons(hk, c, next) when hkey = hk ->
            begin match H.equal c key with
            | ETrue -> h.size <- h.size - 1; next
            | EFalse -> Cons(hk, c, remove_bucket next)
            | EDead ->
                (* The dead key is automatically removed. It is acceptable
                    for this function since it already removes a binding *)
                h.size <- h.size - 1;
                remove_bucket next
            end
        | Cons(hk,c,next) -> Cons(hk, c, remove_bucket next) in
      let i = key_index h hkey in
      h.data.(i) <- remove_bucket h.data.(i)

    (** {!find} don't remove dead keys because it would be surprising for
        the user that a read-only function mutates the state (eg. concurrent
        access). Same for {!iter}, {!fold}, {!mem}.
    *)
    let rec find_rec key hkey = function
      | Empty ->
          raise Not_found
      | Cons(hk, c, rest) when hkey = hk  ->
          begin match H.equal c key with
          | ETrue ->
              begin match H.get_data c with
              | None ->
                  (* This case is not impossible because the gc can run between
                      H.equal and H.get_data *)
                  find_rec key hkey rest
              | Some d -> d
              end
          | EFalse -> find_rec key hkey rest
          | EDead ->
              find_rec key hkey rest
          end
      | Cons(_, _, rest) ->
          find_rec key hkey rest

    let find h key =
      let hkey = H.hash h.seed key in
      (* TODO inline 3 iterations *)
      find_rec key hkey (h.data.(key_index h hkey))

    let rec find_rec_opt key hkey = function
      | Empty ->
          None
      | Cons(hk, c, rest) when hkey = hk  ->
          begin match H.equal c key with
          | ETrue ->
              begin match H.get_data c with
              | None ->
                  (* This case is not impossible because the gc can run between
                      H.equal and H.get_data *)
                  find_rec_opt key hkey rest
              | Some _ as d -> d
              end
          | EFalse -> find_rec_opt key hkey rest
          | EDead ->
              find_rec_opt key hkey rest
          end
      | Cons(_, _, rest) ->
          find_rec_opt key hkey rest

    let find_opt h key =
      let hkey = H.hash h.seed key in
      (* TODO inline 3 iterations *)
      find_rec_opt key hkey (h.data.(key_index h hkey))

    let find_all h key =
      let hkey = H.hash h.seed key in
      let rec find_in_bucket = function
      | Empty -> []
      | Cons(hk, c, rest) when hkey = hk  ->
          begin match H.equal c key with
          | ETrue -> begin match H.get_data c with
              | None ->
                  find_in_bucket rest
              | Some d -> d::find_in_bucket rest
            end
          | EFalse -> find_in_bucket rest
          | EDead ->
              find_in_bucket rest
          end
      | Cons(_, _, rest) ->
          find_in_bucket rest in
      find_in_bucket h.data.(key_index h hkey)


    let replace h key info =
      let hkey = H.hash h.seed key in
      let rec replace_bucket = function
        | Empty -> raise Not_found
        | Cons(hk, c, next) when hkey = hk ->
            begin match H.equal c key with
            | ETrue -> H.set_key_data c key info
            | EFalse | EDead -> replace_bucket next
            end
        | Cons(_,_,next) -> replace_bucket next
      in
      let i = key_index h hkey in
      let l = h.data.(i) in
      try
        replace_bucket l
      with Not_found ->
        let container = H.create key info in
        h.data.(i) <- Cons(hkey, container, l);
        h.size <- h.size + 1;
        if h.size > Array.length h.data lsl 1 then resize h

    let mem h key =
      let hkey = H.hash h.seed key in
      let rec mem_in_bucket = function
      | Empty ->
          false
      | Cons(hk, c, rest) when hk = hkey ->
          begin match H.equal c key with
          | ETrue -> true
          | EFalse | EDead -> mem_in_bucket rest
          end
      | Cons(_hk, _c, rest) -> mem_in_bucket rest in
      mem_in_bucket h.data.(key_index h hkey)

    let iter f h =
      let rec do_bucket = function
        | Empty ->
            ()
        | Cons(_, c, rest) ->
            begin match H.get_key c, H.get_data c with
            | None, _ | _, None -> ()
            | Some k, Some d -> f k d
            end; do_bucket rest in
      let d = h.data in
      for i = 0 to Array.length d - 1 do
        do_bucket d.(i)
      done

    let fold f h init =
      let rec do_bucket b accu =
        match b with
          Empty ->
            accu
        | Cons(_, c, rest) ->
            let accu = begin match H.get_key c, H.get_data c with
              | None, _ | _, None -> accu
              | Some k, Some d -> f k d accu
            end in
            do_bucket rest accu  in
      let d = h.data in
      let accu = ref init in
      for i = 0 to Array.length d - 1 do
        accu := do_bucket d.(i) !accu
      done;
      !accu

    let filter_map_inplace f h =
      let rec do_bucket = function
        | Empty ->
            Empty
        | Cons(hk, c, rest) ->
            match H.get_key c, H.get_data c with
            | None, _ | _, None ->
                do_bucket rest
            | Some k, Some d ->
                match f k d with
                | None ->
                    do_bucket rest
                | Some new_d ->
                    H.set_key_data c k new_d;
                    Cons(hk, c, do_bucket rest)
      in
      let d = h.data in
      for i = 0 to Array.length d - 1 do
        d.(i) <- do_bucket d.(i)
      done

    let length h = h.size

    let rec bucket_length accu = function
      | Empty -> accu
      | Cons(_, _, rest) -> bucket_length (accu + 1) rest

    let stats h =
      let mbl =
        Array.fold_left (fun m b -> max m (bucket_length 0 b)) 0 h.data in
      let histo = Array.make (mbl + 1) 0 in
      Array.iter
        (fun b ->
           let l = bucket_length 0 b in
           histo.(l) <- histo.(l) + 1)
        h.data;
      { Hashtbl.num_bindings = h.size;
        num_buckets = Array.length h.data;
        max_bucket_length = mbl;
        bucket_histogram = histo }

    let rec bucket_length_alive accu = function
      | Empty -> accu
      | Cons(_, c, rest) when H.check_key c ->
          bucket_length_alive (accu + 1) rest
      | Cons(_, _, rest) -> bucket_length_alive accu rest

    let stats_alive h =
      let size = ref 0 in
      let mbl =
        Array.fold_left (fun m b -> max m (bucket_length_alive 0 b)) 0 h.data in
      let histo = Array.make (mbl + 1) 0 in
      Array.iter
        (fun b ->
           let l = bucket_length_alive 0 b in
           size := !size + l;
           histo.(l) <- histo.(l) + 1)
        h.data;
      { Hashtbl.num_bindings = !size;
        num_buckets = Array.length h.data;
        max_bucket_length = mbl;
        bucket_histogram = histo }


  end
end

module ObjEph = Obj.Ephemeron

let _obj_opt : Obj.t option -> 'a option = fun x ->
  match x with
  | None -> x
  | Some v -> Some (Obj.obj v)

(** The previous function is typed so this one is also correct *)
let obj_opt : Obj.t option -> 'a option = fun x -> Obj.magic x


module K1 = struct
  type ('k,'d) t = ObjEph.t

  let create () : ('k,'d) t = ObjEph.create 1

  let get_key (t:('k,'d) t) : 'k option = obj_opt (ObjEph.get_key t 0)
  let get_key_copy (t:('k,'d) t) : 'k option = obj_opt (ObjEph.get_key_copy t 0)
  let set_key (t:('k,'d) t) (k:'k) : unit = ObjEph.set_key t 0 (Obj.repr k)
  let unset_key (t:('k,'d) t) : unit = ObjEph.unset_key t 0
  let check_key (t:('k,'d) t) : bool = ObjEph.check_key t 0

  let blit_key (t1:('k,'d) t) (t2:('k,'d) t): unit =
    ObjEph.blit_key t1 0 t2 0 1

  let get_data (t:('k,'d) t) : 'd option = obj_opt (ObjEph.get_data t)
  let get_data_copy (t:('k,'d) t) : 'd option = obj_opt (ObjEph.get_data_copy t)
  let set_data (t:('k,'d) t) (d:'d) : unit = ObjEph.set_data t (Obj.repr d)
  let unset_data (t:('k,'d) t) : unit = ObjEph.unset_data t
  let check_data (t:('k,'d) t) : bool = ObjEph.check_data t
  let blit_data (t1:(_,'d) t) (t2:(_,'d) t) : unit = ObjEph.blit_data t1 t2

  module MakeSeeded (H:Hashtbl.SeededHashedType) =
    GenHashTable.MakeSeeded(struct
      type 'a container = (H.t,'a) t
      type t = H.t
      let create k d =
        let c = create () in
        set_data c d;
        set_key c k;
        c
      let hash = H.hash
      let equal c k =
        (* {!get_key_copy} is not used because the equality of the user can be
            the physical equality *)
        match get_key c with
        | None -> GenHashTable.EDead
        | Some k' ->
            if H.equal k k' then GenHashTable.ETrue else GenHashTable.EFalse
      let get_data = get_data
      let get_key = get_key
      let set_key_data c k d =
        unset_data c;
        set_key c k;
        set_data c d
      let check_key = check_key
    end)

  module Make(H: Hashtbl.HashedType): (S with type key = H.t) =
  struct
    include MakeSeeded(struct
        type t = H.t
        let equal = H.equal
        let hash (_seed: int) x = H.hash x
      end)
    let create sz = create ~random:false sz
  end

end

module K2 = struct
  type ('k1, 'k2, 'd) t = ObjEph.t

  let create () : ('k1,'k2,'d) t = ObjEph.create 2

  let get_key1 (t:('k1,'k2,'d) t) : 'k1 option = obj_opt (ObjEph.get_key t 0)
  let get_key1_copy (t:('k1,'k2,'d) t) : 'k1 option =
    obj_opt (ObjEph.get_key_copy t 0)
  let set_key1 (t:('k1,'k2,'d) t) (k:'k1) : unit =
    ObjEph.set_key t 0 (Obj.repr k)
  let unset_key1 (t:('k1,'k2,'d) t) : unit = ObjEph.unset_key t 0
  let check_key1 (t:('k1,'k2,'d) t) : bool = ObjEph.check_key t 0

  let get_key2 (t:('k1,'k2,'d) t) : 'k2 option = obj_opt (ObjEph.get_key t 1)
  let get_key2_copy (t:('k1,'k2,'d) t) : 'k2 option =
    obj_opt (ObjEph.get_key_copy t 1)
  let set_key2 (t:('k1,'k2,'d) t) (k:'k2) : unit =
    ObjEph.set_key t 1 (Obj.repr k)
  let unset_key2 (t:('k1,'k2,'d) t) : unit = ObjEph.unset_key t 1
  let check_key2 (t:('k1,'k2,'d) t) : bool = ObjEph.check_key t 1


  let blit_key1 (t1:('k1,_,_) t) (t2:('k1,_,_) t) : unit =
    ObjEph.blit_key t1 0 t2 0 1
  let blit_key2 (t1:(_,'k2,_) t) (t2:(_,'k2,_) t) : unit =
    ObjEph.blit_key t1 1 t2 1 1
  let blit_key12 (t1:('k1,'k2,_) t) (t2:('k1,'k2,_) t) : unit =
    ObjEph.blit_key t1 0 t2 0 2

  let get_data (t:('k1,'k2,'d) t) : 'd option = obj_opt (ObjEph.get_data t)
  let get_data_copy (t:('k1,'k2,'d) t) : 'd option =
    obj_opt (ObjEph.get_data_copy t)
  let set_data (t:('k1,'k2,'d) t) (d:'d) : unit =
    ObjEph.set_data t (Obj.repr d)
  let unset_data (t:('k1,'k2,'d) t) : unit = ObjEph.unset_data t
  let check_data (t:('k1,'k2,'d) t) : bool = ObjEph.check_data t
  let blit_data (t1:(_,_,'d) t) (t2:(_,_,'d) t) : unit = ObjEph.blit_data t1 t2

  module MakeSeeded
      (H1:Hashtbl.SeededHashedType)
      (H2:Hashtbl.SeededHashedType) =
    GenHashTable.MakeSeeded(struct
      type 'a container = (H1.t,H2.t,'a) t
      type t = H1.t * H2.t
      let create (k1,k2) d =
        let c = create () in
        set_data c d;
        set_key1 c k1; set_key2 c k2;
        c
      let hash seed (k1,k2) =
        H1.hash seed k1 + H2.hash seed k2 * 65599
      let equal c (k1,k2) =
        match get_key1 c, get_key2 c with
        | None, _ | _ , None -> GenHashTable.EDead
        | Some k1', Some k2' ->
            if H1.equal k1 k1' && H2.equal k2 k2'
            then GenHashTable.ETrue else GenHashTable.EFalse
      let get_data = get_data
      let get_key c =
        match get_key1 c, get_key2 c with
        | None, _ | _ , None -> None
        | Some k1', Some k2' -> Some (k1', k2')
      let set_key_data c (k1,k2) d =
        unset_data c;
        set_key1 c k1; set_key2 c k2;
        set_data c d
      let check_key c = check_key1 c && check_key2 c
    end)

  module Make(H1: Hashtbl.HashedType)(H2: Hashtbl.HashedType):
    (S with type key = H1.t * H2.t) =
  struct
    include MakeSeeded
        (struct
          type t = H1.t
          let equal = H1.equal
          let hash (_seed: int) x = H1.hash x
        end)
        (struct
          type t = H2.t
          let equal = H2.equal
          let hash (_seed: int) x = H2.hash x
        end)
    let create sz = create ~random:false sz
  end

end

module Kn = struct
  type ('k,'d) t = ObjEph.t

  let create n : ('k,'d) t = ObjEph.create n
  let length (k:('k,'d) t) : int = ObjEph.length k

  let get_key (t:('k,'d) t) (n:int) : 'k option = obj_opt (ObjEph.get_key t n)
  let get_key_copy (t:('k,'d) t) (n:int) : 'k option =
    obj_opt (ObjEph.get_key_copy t n)
  let set_key (t:('k,'d) t) (n:int) (k:'k) : unit =
    ObjEph.set_key t n (Obj.repr k)
  let unset_key (t:('k,'d) t) (n:int) : unit = ObjEph.unset_key t n
  let check_key (t:('k,'d) t) (n:int) : bool = ObjEph.check_key t n

  let blit_key (t1:('k,'d) t) (o1:int) (t2:('k,'d) t) (o2:int) (l:int) : unit =
    ObjEph.blit_key t1 o1 t2 o2 l

  let get_data (t:('k,'d) t) : 'd option = obj_opt (ObjEph.get_data t)
  let get_data_copy (t:('k,'d) t) : 'd option = obj_opt (ObjEph.get_data_copy t)
  let set_data (t:('k,'d) t) (d:'d) : unit = ObjEph.set_data t (Obj.repr d)
  let unset_data (t:('k,'d) t) : unit = ObjEph.unset_data t
  let check_data (t:('k,'d) t) : bool = ObjEph.check_data t
  let blit_data (t1:(_,'d) t) (t2:(_,'d) t) : unit = ObjEph.blit_data t1 t2

  module MakeSeeded (H:Hashtbl.SeededHashedType) =
    GenHashTable.MakeSeeded(struct
      type 'a container = (H.t,'a) t
      type t = H.t array
      let create k d =
        let c = create (Array.length k) in
        set_data c d;
        for i=0 to Array.length k -1 do
          set_key c i k.(i);
        done;
        c
      let hash seed k =
        let h = ref 0 in
        for i=0 to Array.length k -1 do
          h := H.hash seed k.(i) * 65599 + !h;
        done;
        !h
      let equal c k =
        let len  = Array.length k in
        let len' = length c in
        if len != len' then GenHashTable.EFalse
        else
          let rec equal_array k c i =
            if i < 0 then GenHashTable.ETrue
            else
              match get_key c i with
              | None -> GenHashTable.EDead
              | Some ki ->
                  if H.equal k.(i) ki
                  then equal_array k c (i-1)
                  else GenHashTable.EFalse
          in
          equal_array k c (len-1)
      let get_data = get_data
      let get_key c =
        let len = length c in
        if len = 0 then Some [||]
        else
          match get_key c 0 with
          | None -> None
          | Some k0 ->
              let rec fill a i =
                if i < 1 then Some a
                else
                  match get_key c i with
                  | None -> None
                  | Some ki ->
                      a.(i) <- ki;
                      fill a (i-1)
              in
              let a = Array.make len k0 in
              fill a (len-1)
      let set_key_data c k d =
        unset_data c;
        for i=0 to Array.length k -1 do
          set_key c i k.(i);
        done;
        set_data c d
      let check_key c =
        let rec check c i =
          i < 0 || (check_key c i && check c (i-1)) in
        check c (length c - 1)
    end)

  module Make(H: Hashtbl.HashedType): (S with type key = H.t array) =
  struct
    include MakeSeeded(struct
        type t = H.t
        let equal = H.equal
        let hash (_seed: int) x = H.hash x
      end)
    let create sz = create ~random:false sz
  end
end