/usr/lib/ocaml/ephemeron.ml is in ocaml-nox 4.05.0-10ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 | (**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Damien Doligez, projet Para, INRIA Rocquencourt *)
(* *)
(* Copyright 1997 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
module type SeededS = sig
include Hashtbl.SeededS
val clean: 'a t -> unit
val stats_alive: 'a t -> Hashtbl.statistics
(** same as {!stats} but only count the alive bindings *)
end
module type S = sig
include Hashtbl.S
val clean: 'a t -> unit
val stats_alive: 'a t -> Hashtbl.statistics
(** same as {!stats} but only count the alive bindings *)
end
module GenHashTable = struct
type equal =
| ETrue | EFalse
| EDead (** the garbage collector reclaimed the data *)
module MakeSeeded(H: sig
type t
type 'a container
val create: t -> 'a -> 'a container
val hash: int -> t -> int
val equal: 'a container -> t -> equal
val get_data: 'a container -> 'a option
val get_key: 'a container -> t option
val set_key_data: 'a container -> t -> 'a -> unit
val check_key: 'a container -> bool
end) : SeededS with type key = H.t
= struct
type 'a t =
{ mutable size: int; (* number of entries *)
mutable data: 'a bucketlist array; (* the buckets *)
mutable seed: int; (* for randomization *)
initial_size: int; (* initial array size *)
}
and 'a bucketlist =
| Empty
| Cons of int (* hash of the key *) * 'a H.container * 'a bucketlist
(** the hash of the key is kept in order to test the equality of the hash
before the key. Same reason as for Weak.Make *)
type key = H.t
let rec power_2_above x n =
if x >= n then x
else if x * 2 > Sys.max_array_length then x
else power_2_above (x * 2) n
let prng = lazy (Random.State.make_self_init())
let create ?(random = (Hashtbl.is_randomized ())) initial_size =
let s = power_2_above 16 initial_size in
let seed = if random then Random.State.bits (Lazy.force prng) else 0 in
{ initial_size = s; size = 0; seed = seed; data = Array.make s Empty }
let clear h =
h.size <- 0;
let len = Array.length h.data in
for i = 0 to len - 1 do
h.data.(i) <- Empty
done
let reset h =
let len = Array.length h.data in
if len = h.initial_size then
clear h
else begin
h.size <- 0;
h.data <- Array.make h.initial_size Empty
end
let copy h = { h with data = Array.copy h.data }
let key_index h hkey =
hkey land (Array.length h.data - 1)
let clean h =
let rec do_bucket = function
| Empty ->
Empty
| Cons(_, c, rest) when not (H.check_key c) ->
h.size <- h.size - 1;
do_bucket rest
| Cons(hkey, c, rest) ->
Cons(hkey, c, do_bucket rest)
in
let d = h.data in
for i = 0 to Array.length d - 1 do
d.(i) <- do_bucket d.(i)
done
(** resize is the only function to do the actual cleaning of dead keys
(remove does it just because it could).
The goal is to:
- not resize infinitely when the actual number of alive keys is
bounded but keys are continuously added. That would happen if
this function always resize.
- not call this function after each addition, that would happen if this
function don't resize even when only one key is dead.
So the algorithm:
- clean the keys before resizing
- if the number of remaining keys is less than half the size of the
array, don't resize.
- if it is more, resize.
The second problem remains if the table reaches {!Sys.max_array_length}.
*)
let resize h =
let odata = h.data in
let osize = Array.length odata in
let nsize = osize * 2 in
clean h;
if nsize < Sys.max_array_length && h.size >= osize lsr 1 then begin
let ndata = Array.make nsize Empty in
h.data <- ndata; (* so that key_index sees the new bucket count *)
let rec insert_bucket = function
Empty -> ()
| Cons(hkey, data, rest) ->
insert_bucket rest; (* preserve original order of elements *)
let nidx = key_index h hkey in
ndata.(nidx) <- Cons(hkey, data, ndata.(nidx)) in
for i = 0 to osize - 1 do
insert_bucket odata.(i)
done
end
let add h key info =
let hkey = H.hash h.seed key in
let i = key_index h hkey in
let container = H.create key info in
let bucket = Cons(hkey, container, h.data.(i)) in
h.data.(i) <- bucket;
h.size <- h.size + 1;
if h.size > Array.length h.data lsl 1 then resize h
let remove h key =
let hkey = H.hash h.seed key in
let rec remove_bucket = function
| Empty -> Empty
| Cons(hk, c, next) when hkey = hk ->
begin match H.equal c key with
| ETrue -> h.size <- h.size - 1; next
| EFalse -> Cons(hk, c, remove_bucket next)
| EDead ->
(* The dead key is automatically removed. It is acceptable
for this function since it already removes a binding *)
h.size <- h.size - 1;
remove_bucket next
end
| Cons(hk,c,next) -> Cons(hk, c, remove_bucket next) in
let i = key_index h hkey in
h.data.(i) <- remove_bucket h.data.(i)
(** {!find} don't remove dead keys because it would be surprising for
the user that a read-only function mutates the state (eg. concurrent
access). Same for {!iter}, {!fold}, {!mem}.
*)
let rec find_rec key hkey = function
| Empty ->
raise Not_found
| Cons(hk, c, rest) when hkey = hk ->
begin match H.equal c key with
| ETrue ->
begin match H.get_data c with
| None ->
(* This case is not impossible because the gc can run between
H.equal and H.get_data *)
find_rec key hkey rest
| Some d -> d
end
| EFalse -> find_rec key hkey rest
| EDead ->
find_rec key hkey rest
end
| Cons(_, _, rest) ->
find_rec key hkey rest
let find h key =
let hkey = H.hash h.seed key in
(* TODO inline 3 iterations *)
find_rec key hkey (h.data.(key_index h hkey))
let rec find_rec_opt key hkey = function
| Empty ->
None
| Cons(hk, c, rest) when hkey = hk ->
begin match H.equal c key with
| ETrue ->
begin match H.get_data c with
| None ->
(* This case is not impossible because the gc can run between
H.equal and H.get_data *)
find_rec_opt key hkey rest
| Some _ as d -> d
end
| EFalse -> find_rec_opt key hkey rest
| EDead ->
find_rec_opt key hkey rest
end
| Cons(_, _, rest) ->
find_rec_opt key hkey rest
let find_opt h key =
let hkey = H.hash h.seed key in
(* TODO inline 3 iterations *)
find_rec_opt key hkey (h.data.(key_index h hkey))
let find_all h key =
let hkey = H.hash h.seed key in
let rec find_in_bucket = function
| Empty -> []
| Cons(hk, c, rest) when hkey = hk ->
begin match H.equal c key with
| ETrue -> begin match H.get_data c with
| None ->
find_in_bucket rest
| Some d -> d::find_in_bucket rest
end
| EFalse -> find_in_bucket rest
| EDead ->
find_in_bucket rest
end
| Cons(_, _, rest) ->
find_in_bucket rest in
find_in_bucket h.data.(key_index h hkey)
let replace h key info =
let hkey = H.hash h.seed key in
let rec replace_bucket = function
| Empty -> raise Not_found
| Cons(hk, c, next) when hkey = hk ->
begin match H.equal c key with
| ETrue -> H.set_key_data c key info
| EFalse | EDead -> replace_bucket next
end
| Cons(_,_,next) -> replace_bucket next
in
let i = key_index h hkey in
let l = h.data.(i) in
try
replace_bucket l
with Not_found ->
let container = H.create key info in
h.data.(i) <- Cons(hkey, container, l);
h.size <- h.size + 1;
if h.size > Array.length h.data lsl 1 then resize h
let mem h key =
let hkey = H.hash h.seed key in
let rec mem_in_bucket = function
| Empty ->
false
| Cons(hk, c, rest) when hk = hkey ->
begin match H.equal c key with
| ETrue -> true
| EFalse | EDead -> mem_in_bucket rest
end
| Cons(_hk, _c, rest) -> mem_in_bucket rest in
mem_in_bucket h.data.(key_index h hkey)
let iter f h =
let rec do_bucket = function
| Empty ->
()
| Cons(_, c, rest) ->
begin match H.get_key c, H.get_data c with
| None, _ | _, None -> ()
| Some k, Some d -> f k d
end; do_bucket rest in
let d = h.data in
for i = 0 to Array.length d - 1 do
do_bucket d.(i)
done
let fold f h init =
let rec do_bucket b accu =
match b with
Empty ->
accu
| Cons(_, c, rest) ->
let accu = begin match H.get_key c, H.get_data c with
| None, _ | _, None -> accu
| Some k, Some d -> f k d accu
end in
do_bucket rest accu in
let d = h.data in
let accu = ref init in
for i = 0 to Array.length d - 1 do
accu := do_bucket d.(i) !accu
done;
!accu
let filter_map_inplace f h =
let rec do_bucket = function
| Empty ->
Empty
| Cons(hk, c, rest) ->
match H.get_key c, H.get_data c with
| None, _ | _, None ->
do_bucket rest
| Some k, Some d ->
match f k d with
| None ->
do_bucket rest
| Some new_d ->
H.set_key_data c k new_d;
Cons(hk, c, do_bucket rest)
in
let d = h.data in
for i = 0 to Array.length d - 1 do
d.(i) <- do_bucket d.(i)
done
let length h = h.size
let rec bucket_length accu = function
| Empty -> accu
| Cons(_, _, rest) -> bucket_length (accu + 1) rest
let stats h =
let mbl =
Array.fold_left (fun m b -> max m (bucket_length 0 b)) 0 h.data in
let histo = Array.make (mbl + 1) 0 in
Array.iter
(fun b ->
let l = bucket_length 0 b in
histo.(l) <- histo.(l) + 1)
h.data;
{ Hashtbl.num_bindings = h.size;
num_buckets = Array.length h.data;
max_bucket_length = mbl;
bucket_histogram = histo }
let rec bucket_length_alive accu = function
| Empty -> accu
| Cons(_, c, rest) when H.check_key c ->
bucket_length_alive (accu + 1) rest
| Cons(_, _, rest) -> bucket_length_alive accu rest
let stats_alive h =
let size = ref 0 in
let mbl =
Array.fold_left (fun m b -> max m (bucket_length_alive 0 b)) 0 h.data in
let histo = Array.make (mbl + 1) 0 in
Array.iter
(fun b ->
let l = bucket_length_alive 0 b in
size := !size + l;
histo.(l) <- histo.(l) + 1)
h.data;
{ Hashtbl.num_bindings = !size;
num_buckets = Array.length h.data;
max_bucket_length = mbl;
bucket_histogram = histo }
end
end
module ObjEph = Obj.Ephemeron
let _obj_opt : Obj.t option -> 'a option = fun x ->
match x with
| None -> x
| Some v -> Some (Obj.obj v)
(** The previous function is typed so this one is also correct *)
let obj_opt : Obj.t option -> 'a option = fun x -> Obj.magic x
module K1 = struct
type ('k,'d) t = ObjEph.t
let create () : ('k,'d) t = ObjEph.create 1
let get_key (t:('k,'d) t) : 'k option = obj_opt (ObjEph.get_key t 0)
let get_key_copy (t:('k,'d) t) : 'k option = obj_opt (ObjEph.get_key_copy t 0)
let set_key (t:('k,'d) t) (k:'k) : unit = ObjEph.set_key t 0 (Obj.repr k)
let unset_key (t:('k,'d) t) : unit = ObjEph.unset_key t 0
let check_key (t:('k,'d) t) : bool = ObjEph.check_key t 0
let blit_key (t1:('k,'d) t) (t2:('k,'d) t): unit =
ObjEph.blit_key t1 0 t2 0 1
let get_data (t:('k,'d) t) : 'd option = obj_opt (ObjEph.get_data t)
let get_data_copy (t:('k,'d) t) : 'd option = obj_opt (ObjEph.get_data_copy t)
let set_data (t:('k,'d) t) (d:'d) : unit = ObjEph.set_data t (Obj.repr d)
let unset_data (t:('k,'d) t) : unit = ObjEph.unset_data t
let check_data (t:('k,'d) t) : bool = ObjEph.check_data t
let blit_data (t1:(_,'d) t) (t2:(_,'d) t) : unit = ObjEph.blit_data t1 t2
module MakeSeeded (H:Hashtbl.SeededHashedType) =
GenHashTable.MakeSeeded(struct
type 'a container = (H.t,'a) t
type t = H.t
let create k d =
let c = create () in
set_data c d;
set_key c k;
c
let hash = H.hash
let equal c k =
(* {!get_key_copy} is not used because the equality of the user can be
the physical equality *)
match get_key c with
| None -> GenHashTable.EDead
| Some k' ->
if H.equal k k' then GenHashTable.ETrue else GenHashTable.EFalse
let get_data = get_data
let get_key = get_key
let set_key_data c k d =
unset_data c;
set_key c k;
set_data c d
let check_key = check_key
end)
module Make(H: Hashtbl.HashedType): (S with type key = H.t) =
struct
include MakeSeeded(struct
type t = H.t
let equal = H.equal
let hash (_seed: int) x = H.hash x
end)
let create sz = create ~random:false sz
end
end
module K2 = struct
type ('k1, 'k2, 'd) t = ObjEph.t
let create () : ('k1,'k2,'d) t = ObjEph.create 2
let get_key1 (t:('k1,'k2,'d) t) : 'k1 option = obj_opt (ObjEph.get_key t 0)
let get_key1_copy (t:('k1,'k2,'d) t) : 'k1 option =
obj_opt (ObjEph.get_key_copy t 0)
let set_key1 (t:('k1,'k2,'d) t) (k:'k1) : unit =
ObjEph.set_key t 0 (Obj.repr k)
let unset_key1 (t:('k1,'k2,'d) t) : unit = ObjEph.unset_key t 0
let check_key1 (t:('k1,'k2,'d) t) : bool = ObjEph.check_key t 0
let get_key2 (t:('k1,'k2,'d) t) : 'k2 option = obj_opt (ObjEph.get_key t 1)
let get_key2_copy (t:('k1,'k2,'d) t) : 'k2 option =
obj_opt (ObjEph.get_key_copy t 1)
let set_key2 (t:('k1,'k2,'d) t) (k:'k2) : unit =
ObjEph.set_key t 1 (Obj.repr k)
let unset_key2 (t:('k1,'k2,'d) t) : unit = ObjEph.unset_key t 1
let check_key2 (t:('k1,'k2,'d) t) : bool = ObjEph.check_key t 1
let blit_key1 (t1:('k1,_,_) t) (t2:('k1,_,_) t) : unit =
ObjEph.blit_key t1 0 t2 0 1
let blit_key2 (t1:(_,'k2,_) t) (t2:(_,'k2,_) t) : unit =
ObjEph.blit_key t1 1 t2 1 1
let blit_key12 (t1:('k1,'k2,_) t) (t2:('k1,'k2,_) t) : unit =
ObjEph.blit_key t1 0 t2 0 2
let get_data (t:('k1,'k2,'d) t) : 'd option = obj_opt (ObjEph.get_data t)
let get_data_copy (t:('k1,'k2,'d) t) : 'd option =
obj_opt (ObjEph.get_data_copy t)
let set_data (t:('k1,'k2,'d) t) (d:'d) : unit =
ObjEph.set_data t (Obj.repr d)
let unset_data (t:('k1,'k2,'d) t) : unit = ObjEph.unset_data t
let check_data (t:('k1,'k2,'d) t) : bool = ObjEph.check_data t
let blit_data (t1:(_,_,'d) t) (t2:(_,_,'d) t) : unit = ObjEph.blit_data t1 t2
module MakeSeeded
(H1:Hashtbl.SeededHashedType)
(H2:Hashtbl.SeededHashedType) =
GenHashTable.MakeSeeded(struct
type 'a container = (H1.t,H2.t,'a) t
type t = H1.t * H2.t
let create (k1,k2) d =
let c = create () in
set_data c d;
set_key1 c k1; set_key2 c k2;
c
let hash seed (k1,k2) =
H1.hash seed k1 + H2.hash seed k2 * 65599
let equal c (k1,k2) =
match get_key1 c, get_key2 c with
| None, _ | _ , None -> GenHashTable.EDead
| Some k1', Some k2' ->
if H1.equal k1 k1' && H2.equal k2 k2'
then GenHashTable.ETrue else GenHashTable.EFalse
let get_data = get_data
let get_key c =
match get_key1 c, get_key2 c with
| None, _ | _ , None -> None
| Some k1', Some k2' -> Some (k1', k2')
let set_key_data c (k1,k2) d =
unset_data c;
set_key1 c k1; set_key2 c k2;
set_data c d
let check_key c = check_key1 c && check_key2 c
end)
module Make(H1: Hashtbl.HashedType)(H2: Hashtbl.HashedType):
(S with type key = H1.t * H2.t) =
struct
include MakeSeeded
(struct
type t = H1.t
let equal = H1.equal
let hash (_seed: int) x = H1.hash x
end)
(struct
type t = H2.t
let equal = H2.equal
let hash (_seed: int) x = H2.hash x
end)
let create sz = create ~random:false sz
end
end
module Kn = struct
type ('k,'d) t = ObjEph.t
let create n : ('k,'d) t = ObjEph.create n
let length (k:('k,'d) t) : int = ObjEph.length k
let get_key (t:('k,'d) t) (n:int) : 'k option = obj_opt (ObjEph.get_key t n)
let get_key_copy (t:('k,'d) t) (n:int) : 'k option =
obj_opt (ObjEph.get_key_copy t n)
let set_key (t:('k,'d) t) (n:int) (k:'k) : unit =
ObjEph.set_key t n (Obj.repr k)
let unset_key (t:('k,'d) t) (n:int) : unit = ObjEph.unset_key t n
let check_key (t:('k,'d) t) (n:int) : bool = ObjEph.check_key t n
let blit_key (t1:('k,'d) t) (o1:int) (t2:('k,'d) t) (o2:int) (l:int) : unit =
ObjEph.blit_key t1 o1 t2 o2 l
let get_data (t:('k,'d) t) : 'd option = obj_opt (ObjEph.get_data t)
let get_data_copy (t:('k,'d) t) : 'd option = obj_opt (ObjEph.get_data_copy t)
let set_data (t:('k,'d) t) (d:'d) : unit = ObjEph.set_data t (Obj.repr d)
let unset_data (t:('k,'d) t) : unit = ObjEph.unset_data t
let check_data (t:('k,'d) t) : bool = ObjEph.check_data t
let blit_data (t1:(_,'d) t) (t2:(_,'d) t) : unit = ObjEph.blit_data t1 t2
module MakeSeeded (H:Hashtbl.SeededHashedType) =
GenHashTable.MakeSeeded(struct
type 'a container = (H.t,'a) t
type t = H.t array
let create k d =
let c = create (Array.length k) in
set_data c d;
for i=0 to Array.length k -1 do
set_key c i k.(i);
done;
c
let hash seed k =
let h = ref 0 in
for i=0 to Array.length k -1 do
h := H.hash seed k.(i) * 65599 + !h;
done;
!h
let equal c k =
let len = Array.length k in
let len' = length c in
if len != len' then GenHashTable.EFalse
else
let rec equal_array k c i =
if i < 0 then GenHashTable.ETrue
else
match get_key c i with
| None -> GenHashTable.EDead
| Some ki ->
if H.equal k.(i) ki
then equal_array k c (i-1)
else GenHashTable.EFalse
in
equal_array k c (len-1)
let get_data = get_data
let get_key c =
let len = length c in
if len = 0 then Some [||]
else
match get_key c 0 with
| None -> None
| Some k0 ->
let rec fill a i =
if i < 1 then Some a
else
match get_key c i with
| None -> None
| Some ki ->
a.(i) <- ki;
fill a (i-1)
in
let a = Array.make len k0 in
fill a (len-1)
let set_key_data c k d =
unset_data c;
for i=0 to Array.length k -1 do
set_key c i k.(i);
done;
set_data c d
let check_key c =
let rec check c i =
i < 0 || (check_key c i && check c (i-1)) in
check c (length c - 1)
end)
module Make(H: Hashtbl.HashedType): (S with type key = H.t array) =
struct
include MakeSeeded(struct
type t = H.t
let equal = H.equal
let hash (_seed: int) x = H.hash x
end)
let create sz = create ~random:false sz
end
end
|