/usr/lib/ocaml/map.ml is in ocaml-nox 4.05.0-10ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 | (**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
module type OrderedType =
sig
type t
val compare: t -> t -> int
end
module type S =
sig
type key
type +'a t
val empty: 'a t
val is_empty: 'a t -> bool
val mem: key -> 'a t -> bool
val add: key -> 'a -> 'a t -> 'a t
val singleton: key -> 'a -> 'a t
val remove: key -> 'a t -> 'a t
val merge:
(key -> 'a option -> 'b option -> 'c option) -> 'a t -> 'b t -> 'c t
val union: (key -> 'a -> 'a -> 'a option) -> 'a t -> 'a t -> 'a t
val compare: ('a -> 'a -> int) -> 'a t -> 'a t -> int
val equal: ('a -> 'a -> bool) -> 'a t -> 'a t -> bool
val iter: (key -> 'a -> unit) -> 'a t -> unit
val fold: (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b
val for_all: (key -> 'a -> bool) -> 'a t -> bool
val exists: (key -> 'a -> bool) -> 'a t -> bool
val filter: (key -> 'a -> bool) -> 'a t -> 'a t
val partition: (key -> 'a -> bool) -> 'a t -> 'a t * 'a t
val cardinal: 'a t -> int
val bindings: 'a t -> (key * 'a) list
val min_binding: 'a t -> (key * 'a)
val min_binding_opt: 'a t -> (key * 'a) option
val max_binding: 'a t -> (key * 'a)
val max_binding_opt: 'a t -> (key * 'a) option
val choose: 'a t -> (key * 'a)
val choose_opt: 'a t -> (key * 'a) option
val split: key -> 'a t -> 'a t * 'a option * 'a t
val find: key -> 'a t -> 'a
val find_opt: key -> 'a t -> 'a option
val find_first: (key -> bool) -> 'a t -> key * 'a
val find_first_opt: (key -> bool) -> 'a t -> (key * 'a) option
val find_last: (key -> bool) -> 'a t -> key * 'a
val find_last_opt: (key -> bool) -> 'a t -> (key * 'a) option
val map: ('a -> 'b) -> 'a t -> 'b t
val mapi: (key -> 'a -> 'b) -> 'a t -> 'b t
end
module Make(Ord: OrderedType) = struct
type key = Ord.t
type 'a t =
Empty
| Node of 'a t * key * 'a * 'a t * int
let height = function
Empty -> 0
| Node(_,_,_,_,h) -> h
let create l x d r =
let hl = height l and hr = height r in
Node(l, x, d, r, (if hl >= hr then hl + 1 else hr + 1))
let singleton x d = Node(Empty, x, d, Empty, 1)
let bal l x d r =
let hl = match l with Empty -> 0 | Node(_,_,_,_,h) -> h in
let hr = match r with Empty -> 0 | Node(_,_,_,_,h) -> h in
if hl > hr + 2 then begin
match l with
Empty -> invalid_arg "Map.bal"
| Node(ll, lv, ld, lr, _) ->
if height ll >= height lr then
create ll lv ld (create lr x d r)
else begin
match lr with
Empty -> invalid_arg "Map.bal"
| Node(lrl, lrv, lrd, lrr, _)->
create (create ll lv ld lrl) lrv lrd (create lrr x d r)
end
end else if hr > hl + 2 then begin
match r with
Empty -> invalid_arg "Map.bal"
| Node(rl, rv, rd, rr, _) ->
if height rr >= height rl then
create (create l x d rl) rv rd rr
else begin
match rl with
Empty -> invalid_arg "Map.bal"
| Node(rll, rlv, rld, rlr, _) ->
create (create l x d rll) rlv rld (create rlr rv rd rr)
end
end else
Node(l, x, d, r, (if hl >= hr then hl + 1 else hr + 1))
let empty = Empty
let is_empty = function Empty -> true | _ -> false
let rec add x data = function
Empty ->
Node(Empty, x, data, Empty, 1)
| Node(l, v, d, r, h) as m ->
let c = Ord.compare x v in
if c = 0 then
if d == data then m else Node(l, x, data, r, h)
else if c < 0 then
let ll = add x data l in
if l == ll then m else bal ll v d r
else
let rr = add x data r in
if r == rr then m else bal l v d rr
let rec find x = function
Empty ->
raise Not_found
| Node(l, v, d, r, _) ->
let c = Ord.compare x v in
if c = 0 then d
else find x (if c < 0 then l else r)
let rec find_first_aux v0 d0 f = function
Empty ->
(v0, d0)
| Node(l, v, d, r, _) ->
if f v then
find_first_aux v d f l
else
find_first_aux v0 d0 f r
let rec find_first f = function
Empty ->
raise Not_found
| Node(l, v, d, r, _) ->
if f v then
find_first_aux v d f l
else
find_first f r
let rec find_first_opt_aux v0 d0 f = function
Empty ->
Some (v0, d0)
| Node(l, v, d, r, _) ->
if f v then
find_first_opt_aux v d f l
else
find_first_opt_aux v0 d0 f r
let rec find_first_opt f = function
Empty ->
None
| Node(l, v, d, r, _) ->
if f v then
find_first_opt_aux v d f l
else
find_first_opt f r
let rec find_last_aux v0 d0 f = function
Empty ->
(v0, d0)
| Node(l, v, d, r, _) ->
if f v then
find_last_aux v d f r
else
find_last_aux v0 d0 f l
let rec find_last f = function
Empty ->
raise Not_found
| Node(l, v, d, r, _) ->
if f v then
find_last_aux v d f r
else
find_last f l
let rec find_last_opt_aux v0 d0 f = function
Empty ->
Some (v0, d0)
| Node(l, v, d, r, _) ->
if f v then
find_last_opt_aux v d f r
else
find_last_opt_aux v0 d0 f l
let rec find_last_opt f = function
Empty ->
None
| Node(l, v, d, r, _) ->
if f v then
find_last_opt_aux v d f r
else
find_last_opt f l
let rec find_opt x = function
Empty ->
None
| Node(l, v, d, r, _) ->
let c = Ord.compare x v in
if c = 0 then Some d
else find_opt x (if c < 0 then l else r)
let rec mem x = function
Empty ->
false
| Node(l, v, _, r, _) ->
let c = Ord.compare x v in
c = 0 || mem x (if c < 0 then l else r)
let rec min_binding = function
Empty -> raise Not_found
| Node(Empty, x, d, _, _) -> (x, d)
| Node(l, _, _, _, _) -> min_binding l
let rec min_binding_opt = function
Empty -> None
| Node(Empty, x, d, _, _) -> Some (x, d)
| Node(l, _, _, _, _) -> min_binding_opt l
let rec max_binding = function
Empty -> raise Not_found
| Node(_, x, d, Empty, _) -> (x, d)
| Node(_, _, _, r, _) -> max_binding r
let rec max_binding_opt = function
Empty -> None
| Node(_, x, d, Empty, _) -> Some (x, d)
| Node(_, _, _, r, _) -> max_binding_opt r
let rec remove_min_binding = function
Empty -> invalid_arg "Map.remove_min_elt"
| Node(Empty, _, _, r, _) -> r
| Node(l, x, d, r, _) -> bal (remove_min_binding l) x d r
let merge t1 t2 =
match (t1, t2) with
(Empty, t) -> t
| (t, Empty) -> t
| (_, _) ->
let (x, d) = min_binding t2 in
bal t1 x d (remove_min_binding t2)
let rec remove x = function
Empty ->
Empty
| (Node(l, v, d, r, _) as t) ->
let c = Ord.compare x v in
if c = 0 then merge l r
else if c < 0 then
let ll = remove x l in if l == ll then t else bal ll v d r
else
let rr = remove x r in if r == rr then t else bal l v d rr
let rec iter f = function
Empty -> ()
| Node(l, v, d, r, _) ->
iter f l; f v d; iter f r
let rec map f = function
Empty ->
Empty
| Node(l, v, d, r, h) ->
let l' = map f l in
let d' = f d in
let r' = map f r in
Node(l', v, d', r', h)
let rec mapi f = function
Empty ->
Empty
| Node(l, v, d, r, h) ->
let l' = mapi f l in
let d' = f v d in
let r' = mapi f r in
Node(l', v, d', r', h)
let rec fold f m accu =
match m with
Empty -> accu
| Node(l, v, d, r, _) ->
fold f r (f v d (fold f l accu))
let rec for_all p = function
Empty -> true
| Node(l, v, d, r, _) -> p v d && for_all p l && for_all p r
let rec exists p = function
Empty -> false
| Node(l, v, d, r, _) -> p v d || exists p l || exists p r
(* Beware: those two functions assume that the added k is *strictly*
smaller (or bigger) than all the present keys in the tree; it
does not test for equality with the current min (or max) key.
Indeed, they are only used during the "join" operation which
respects this precondition.
*)
let rec add_min_binding k v = function
| Empty -> singleton k v
| Node (l, x, d, r, _) ->
bal (add_min_binding k v l) x d r
let rec add_max_binding k v = function
| Empty -> singleton k v
| Node (l, x, d, r, _) ->
bal l x d (add_max_binding k v r)
(* Same as create and bal, but no assumptions are made on the
relative heights of l and r. *)
let rec join l v d r =
match (l, r) with
(Empty, _) -> add_min_binding v d r
| (_, Empty) -> add_max_binding v d l
| (Node(ll, lv, ld, lr, lh), Node(rl, rv, rd, rr, rh)) ->
if lh > rh + 2 then bal ll lv ld (join lr v d r) else
if rh > lh + 2 then bal (join l v d rl) rv rd rr else
create l v d r
(* Merge two trees l and r into one.
All elements of l must precede the elements of r.
No assumption on the heights of l and r. *)
let concat t1 t2 =
match (t1, t2) with
(Empty, t) -> t
| (t, Empty) -> t
| (_, _) ->
let (x, d) = min_binding t2 in
join t1 x d (remove_min_binding t2)
let concat_or_join t1 v d t2 =
match d with
| Some d -> join t1 v d t2
| None -> concat t1 t2
let rec split x = function
Empty ->
(Empty, None, Empty)
| Node(l, v, d, r, _) ->
let c = Ord.compare x v in
if c = 0 then (l, Some d, r)
else if c < 0 then
let (ll, pres, rl) = split x l in (ll, pres, join rl v d r)
else
let (lr, pres, rr) = split x r in (join l v d lr, pres, rr)
let rec merge f s1 s2 =
match (s1, s2) with
(Empty, Empty) -> Empty
| (Node (l1, v1, d1, r1, h1), _) when h1 >= height s2 ->
let (l2, d2, r2) = split v1 s2 in
concat_or_join (merge f l1 l2) v1 (f v1 (Some d1) d2) (merge f r1 r2)
| (_, Node (l2, v2, d2, r2, _)) ->
let (l1, d1, r1) = split v2 s1 in
concat_or_join (merge f l1 l2) v2 (f v2 d1 (Some d2)) (merge f r1 r2)
| _ ->
assert false
let rec union f s1 s2 =
match (s1, s2) with
| (Empty, s) | (s, Empty) -> s
| (Node (l1, v1, d1, r1, h1), Node (l2, v2, d2, r2, h2)) ->
if h1 >= h2 then
let (l2, d2, r2) = split v1 s2 in
let l = union f l1 l2 and r = union f r1 r2 in
match d2 with
| None -> join l v1 d1 r
| Some d2 -> concat_or_join l v1 (f v1 d1 d2) r
else
let (l1, d1, r1) = split v2 s1 in
let l = union f l1 l2 and r = union f r1 r2 in
match d1 with
| None -> join l v2 d2 r
| Some d1 -> concat_or_join l v2 (f v2 d1 d2) r
let rec filter p = function
Empty -> Empty
| Node(l, v, d, r, _) as t ->
(* call [p] in the expected left-to-right order *)
let l' = filter p l in
let pvd = p v d in
let r' = filter p r in
if pvd then if l==l' && r==r' then t else join l' v d r'
else concat l' r'
let rec partition p = function
Empty -> (Empty, Empty)
| Node(l, v, d, r, _) ->
(* call [p] in the expected left-to-right order *)
let (lt, lf) = partition p l in
let pvd = p v d in
let (rt, rf) = partition p r in
if pvd
then (join lt v d rt, concat lf rf)
else (concat lt rt, join lf v d rf)
type 'a enumeration = End | More of key * 'a * 'a t * 'a enumeration
let rec cons_enum m e =
match m with
Empty -> e
| Node(l, v, d, r, _) -> cons_enum l (More(v, d, r, e))
let compare cmp m1 m2 =
let rec compare_aux e1 e2 =
match (e1, e2) with
(End, End) -> 0
| (End, _) -> -1
| (_, End) -> 1
| (More(v1, d1, r1, e1), More(v2, d2, r2, e2)) ->
let c = Ord.compare v1 v2 in
if c <> 0 then c else
let c = cmp d1 d2 in
if c <> 0 then c else
compare_aux (cons_enum r1 e1) (cons_enum r2 e2)
in compare_aux (cons_enum m1 End) (cons_enum m2 End)
let equal cmp m1 m2 =
let rec equal_aux e1 e2 =
match (e1, e2) with
(End, End) -> true
| (End, _) -> false
| (_, End) -> false
| (More(v1, d1, r1, e1), More(v2, d2, r2, e2)) ->
Ord.compare v1 v2 = 0 && cmp d1 d2 &&
equal_aux (cons_enum r1 e1) (cons_enum r2 e2)
in equal_aux (cons_enum m1 End) (cons_enum m2 End)
let rec cardinal = function
Empty -> 0
| Node(l, _, _, r, _) -> cardinal l + 1 + cardinal r
let rec bindings_aux accu = function
Empty -> accu
| Node(l, v, d, r, _) -> bindings_aux ((v, d) :: bindings_aux accu r) l
let bindings s =
bindings_aux [] s
let choose = min_binding
let choose_opt = min_binding_opt
end
|