/usr/share/octave/packages/interval-3.1.0/verlinineqnn.m is in octave-interval 3.1.0-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 | ## Copyright 2008 Jiří Rohn
## Copyright 2016-2017 Oliver Heimlich
##
## This program is derived from verlinineqnn in VERSOFT, published on
## 2016-07-26, which is distributed under the terms of the Expat license,
## a.k.a. the MIT license. Original Author is Jiří Rohn. Migration to Octave
## code has been performed by Oliver Heimlich.
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @documentencoding UTF-8
## @deftypefun {[@var{x}, @var{y}] =} verlinineqnn (@var{A}, @var{b})
## Verified nonnegative solution of a system of linear inequalities.
##
## For a rectangular real matrix @var{A} and a matching real vector @var{b},
## this function either computes a verified solution of the system of linear
## inequalities
## @display
## @var{A} * @var{x} @leq{} b, @*
## @var{x} @geq{} 0,
## @end display
## or verifies nonexistence of a solution, or yields no verified result.
##
## Possible outputs:
## @itemize @bullet
## @item
## Either @var{x} is a real vector verified to satisfy both inequalities and
## @var{y} is a vector of NaN's,
##
## @item
## or @var{y} is a real vector verified to satisfy
## @display
## @var{A}' * @var{y} @geq{} 0, @*
## @var{y} @geq{} 0, @*
## @var{b}' * @var{y} @leq{} -1
## @end display
## (which by Farka's lemma implies nonexistence of a solution to the original
## inequalities), and @var{x} is a vector of NaN's,
##
## @item
## or both @var{x} and @var{y} are NaN's. In this case no verified result could
## be found.
## @end itemize
##
## This work was supported by the Czech Republic National Research Program
## “Information Society”, project 1ET400300415.
##
## @seealso{linprog}
## @end deftypefun
## Author: Jiří Rohn
## Keywords: interval
## Created: 2008-01-05
function [x, y] = verlinineqnn (A, b)
if (nargin ~= 2)
print_usage ();
return
endif
b = b(:);
[m, n] = size (A);
if (m ~= length(b) || ~isreal (A) || ~isreal (b))
error ("verlinineqnn: Parameters must be real and of matching size");
endif
if (~issparse (A))
A = sparse (A);
endif
x = verlinineqnninner (A, b);
if (~isnan (x(1)) || nargout < 2)
y = nan (m, 1);
return
endif
Ao = [-A'; -speye(m, m); b'];
bo = [zeros(1, n + m), -1]';
y = verlinineqnninner (Ao, bo);
endfunction
function x = verlinineqnninner (A, b)
## inner subroutine of verlinineqnn
## finds a verified solution to A*x<=b, x>=0, or yields a vector of NaN's
## additive and multiplicative perturbation used
[m, n] = size (A);
ep = max (1e-10, max ([m n 100]) * max ([norm(A, inf) norm(b, inf)]) * eps);
e = ones (n, 1);
Ao = [A; -speye(n, n)];
bo = [b' zeros(n, 1)']'; # Ao*x<=bo is equivalent to A*x<=b, x>=0
# additive perturbation
bo = bo - ep .* ones (m + n, 1);
x = lpprocedure (e, Ao, bo); # solves min e'*x subject to Ao*x<=bo
if (not (any (isnan (x)(:))))
left = A * infsup (x); # interval quantity
if (all (left.sup <= b) && all (x >= 0))
# verified solution
return
endif
endif
# multiplicative perturbation
bo = bo - ep .* abs (bo) - ep .* (bo == 0);
x = lpprocedure (e, Ao, bo); # solves min e'*x subject to Ao*x<=bo
if (not (any (isnan (x)(:))))
left = A * infsup (x); # interval quantity
if (all (left.sup <= b) && all (x >= 0))
# verified solution
return
endif
endif
# no verified solution
x = nan (n, 1);
endfunction
function x = lpprocedure (c, A, b)
## solves linear programming problem min c'*x subject to A*x<=b
## x should be always assigned (unverified optimal solution, or something else;
## the result is checked afterwards)
## placed separately so that a different linear programming procedure might
## also be used
persistent GLP_MSG_OFF = 0;
[m, n] = size (A);
x = glpk (c, A, b, ...
[], [], ... # 0 <= x <= inf
repmat ("U", 1, m), ... # inequality constraint with an upper bound b
repmat ("C", 1, n), ... # continuous variable x
1, ... # minimization
struct ("msglev", GLP_MSG_OFF));
endfunction
%!test
%! A = [-2, -3; -2, -1];
%! b = [-1500; -1000];
%! [x, y] = verlinineqnn (A, b);
%! assert (x, [375; 250], 1e-9);
%! assert (all (x >= [375; 250]));
%! assert (isnan (y));
%!test
%! A = [1, 2; 3, 4];
%! b = [-1; 0];
%! [x, y] = verlinineqnn (A, b);
%! assert (y, [1; 0], 1e-9);
%! assert (all (y >= [1; 0]));
%! assert (isnan (x));
%!test
%! A = [1, 2; 3, 4];
%! b = [1; 1];
%! [x, y] = verlinineqnn (A, b);
%! assert (x, [0; 0]);
%! assert (isnan (y));
|