/usr/share/octave/packages/interval-3.1.0/verlinprog.m is in octave-interval 3.1.0-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 | ## Copyright 2007 Jiří Rohn
## Copyright 2016 Oliver Heimlich
##
## This program is derived from verlinprog in VERSOFT, published on
## 2016-07-26, which is distributed under the terms of the Expat license,
## a.k.a. the MIT license. Original Author is Jiří Rohn. Migration to Octave
## code has been performed by Oliver Heimlich.
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @documentencoding UTF-8
## @deftypefun {[@var{flag}, @var{x}, @var{y}, @var{h}] =} verlinprog (@var{A}, @var{b}, @var{c})
## Verified linear programming.
##
## For a real matrix @var{A} (full or sparse) and matching real vectors
## @var{b}, @var{c}, this function either computes verified optimal solution
## @var{x}, verified dual optimal solution @var{y} and verified optimal value
## @var{h} of the linear programming problem
## @display
## min @var{c}' * @var{x} subject to @var{A} * @var{x} = @var{b}, x @geq{} 0,
## @end display
## or verifies (in)feasibility, or verifies unboundedness, or yields no
## verified result. The respective outcome is always described verbally in the
## variable @var{flag}.
##
## Possible values of @var{flag}:
## @table @option
## @item verified optimum
## @var{x} is verified to enclose a primal optimal solution,
## @var{y} is verified to enclose a dual optimal solution,
## @var{h} is verified to enclose the optimal value,
##
## @item verified unbounded
## @var{x} is verified to enclose a primal feasible solution @var{xo}, and
## @var{y} is verified to enclose a vector @var{yo} such that the objective
## tends to -Inf along the feasible half-line
## @{@var{xo} + @var{t} * @var{yo} | @var{t} @geq{} 0@},
## @var{h} is empty,
##
## @item verified feasible
## @var{x} is verified to enclose a primal feasible solution
## (neither optimality nor unboundedness could be verified),
## @var{y}, @var{h} are empty,
##
## @item verified infeasible
## @var{y} is verified to enclose a Farkas vector @var{yo} satisfying
## @var{A}' * @var{yo} @geq{} 0, @var{b}' * @var{yo} < 0
## (whose existence proves primal infeasibility),
## @var{x}, @var{h} are empty,
##
## @item no verified result
## @var{x}, @var{y}, and @var{h} are empty (no verified result could be found).
## @end table
##
## Complexity: The algorithm solves at most four linear programming problems
## (independently of the size of the original problem) and uses a verification
## procedure which runs approximately in O(@var{m}³) time, where
## @var{m} = rows (@var{A}).
##
## This work was supported by the Czech Republic National Research
## Program “Information Society”, project 1ET400300415.
## @seealso{linprog}
## @end deftypefun
## Author: Jiří Rohn
## Keywords: interval
## Created: 2007
function [flag, x, y, h] = verlinprog (A, b, c)
if (nargin ~= 3)
print_usage ();
return
endif
b = b(:); c = c(:);
[m, n] = size(A);
p = length (b); q = length (c);
flag = "no verified result";
x = repmat (infsup, n, 1);
y = repmat (infsup, m, 1);
h = infsup;
if (~(m == p && n == q) || (m > n))
error ("verlinprog: sizes do not match");
endif
if (~isreal (A) || ~isreal (b) || ~isreal (c))
error("verlinprog: data not real");
endif
if issparse (b)
b = full (b);
end
if issparse (c)
c = full (c);
end
# verifying infeasibility
yi = verinfeas (A, b);
if (~isempty(yi(1))) # verified Farkas vector found
y = yi;
flag = "verified infeasible";
return
endif
# verifying feasibility
xf = veropt (A, b, ones (n, 1));
if (isempty (xf(1))) # verified feasible solution not found
flag = "no verified result";
return
endif
# verifying unboundedness
yu = verunbound (A, c);
if (~isempty (yu(1))) # verified descent direction found
x = xf;
y = yu;
flag = "verified unbounded";
return
endif
# verifying optimality
[xo, B, N] = veropt (A, b, c);
if (isempty (xo(1))) % verified feasible primal solution with basis B not found
x = xf; # previous feasible solution outputted
flag = "verified feasible";
return
endif
AB = A(:, B);
if (issparse (AB))
AB = full (AB); # only the square submatrix taken full
endif
yB = mldivide (infsup (AB'), infsup (c(B)));
if (isempty (yB(1))) # verified feasible dual solution not found
x = xo; # candidate for optimum outputted as feasible solution
flag = "verified feasible";
return
endif
c = infsup (c);
A = infsup (A);
crit = c' - yB' * A; # criterial row (dual feasibility)
crit = crit(N); # nonbasic part of it
if (~all (crit.inf >= 0)) # verified feasible dual solution not found
x = xo; % candidate for optimum outputted as feasible solution
flag = "verified feasible";
return
endif
# verified quantities # verified primal and dual feasible solutions found
x = xo; # x is a verified primal optimal solution
y = yB; # y is a verified dual optimal solution
if (nargout >= 3)
h1 = c' * x;
h2 = b' * y;
h = intersect (h1, h2); # h is a verified optimal value (duality theorem)
if (isempty (h))
h = h1;
end
endif
flag = "verified optimum";
endfunction
function [x, B, N] = veropt (A, b, c)
## B is the "basis index set" of an optimal solution of the LP problem
## min c'*x subject to A*x=b, x>=0,
## x is a verified basic feasible solution with this basis
## N is the set of nonbasic indices
persistent GLP_MSG_OFF = 0;
[m, n] = size (A);
x = repmat(infsup, n, 1);
B = nan (m, 1);
N = nan (n, 1);
[xopt, ~, exitflag] = glpk (c, A, b, ...
[], [], ... # 0 <= x <= inf
repmat ("S", 1, m), ... # equality constraints Ax = b
repmat ("C", 1, n), ... # continuous variable x
1, ... # minimization
struct ("msglev", GLP_MSG_OFF));
if (exitflag ~= 0)
return
endif
[xx, J] = sort (xopt);
B = J(n - m + 1 : n); # B is set of "basic" indices,
N = J(1 : n - m); # N of "nonbasic" ones
AB = A(:, B);
if (issparse (AB))
AB = full (AB); # only the square submatrix taken full (because of mldivide)
endif
xB = mldivide (infsup (AB), infsup (b));
if (isempty (xB(1)) || ~all (xB.inf >= 0))
# verified "optimal" solution not found
return
endif
# verified "optimal" solution found
x = infsup (zeros (n, 1));
x(B) = xB;
endfunction
function y = verinfeas (A, b)
# y verified to enclose a Farkas vector yo (i.e., satisfying A'*yo>=0, b'*yo<0)
# its existence implies infeasibility of A*x=b
[m, n] = size (A);
y = repmat(infsup, m, 1);
ep = max (1e-08, max ([m n 100]) * max ([norm(A, inf) norm(b, inf)]) * eps);
Afv = [A' -A' -eye(n) zeros(n,1); # Afv is (n+1)x(2*m+n+1)
b' -b' zeros(1,n) 1];
bfv = [zeros(n, 1)' -1]'; # bfv is (n+1)x1
# perturbation to compensate roundoff errors (so that A'*y>=0)
bfv = bfv + ep * [ones(1, n) -1]';
yf = veropt (Afv, bfv, ones (2 * m + n + 1, 1)); % system: A'*y>=0, b'*y<=-1, y written as y=y1-y2
if (~isempty (yf(1)))
yf = mid (yf);
y1 = yf(1 : m);
y2 = yf(m + 1 : 2 * m);
yf = y1 - y2; # would-be Farkas vector
A = infsup (A);
b = infsup (b);
yf = infsup (yf); # (i.e., should satisfy A'*y>=0, b'*y<0)
alpha = A' * yf;
beta = b' * yf;
if (all (alpha.inf >= 0)) && (beta.sup < 0)
# infeasibility verified
y=yf; # Farkas vector outputted
endif
endif
endfunction
function y = verunbound (A, c)
# y verified to enclose a vector yo satisfying A*yo=0, yo>=0, c'*yo<=-1
# under feasibility its existence implies unboundedness
[m, n] = size (A);
y = repmat (infsup, n, 1);
Aunb = [A zeros(m, 1); # Aunb is (m+1)x(n+1)
c' 1];
bunb = [zeros(1, m) -1]'; # bunb is (m+1)x1
yunb = veropt (Aunb, bunb, ones (n + 1, 1)); # yunb is (n+1)x1
if (~isempty (yunb(1)))
# y satisfies A*y=0, y>=0, c'*y=-1
y = yunb(1:n);
return
endif
endfunction
%!test
%! A = [-2, -3; -2, -1];
%! b = [-1500, -1000];
%! c = [1; 1];
%! [flag, x, y, h] = verlinprog (A, b, c);
%! assert (flag, "verified optimum");
%! assert (ismember ([375; 250], x));
%! assert (wid (x) < 1e-12);
%! assert (ismember ([-0.25; -0.25], y));
%! assert (wid (y) < 1e-16);
%! assert (ismember (625, h));
%! assert (wid (h) < 1e-12);
|