This file is indexed.

/usr/share/octave/packages/linear-algebra-2.2.2/doc-cache is in octave-linear-algebra 2.2.2-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
# doc-cache created by Octave 4.2.1
# name: cache
# type: cell
# rows: 3
# columns: 18
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
cartprod


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 762
 -- Function File: cartprod (VARARGIN)

     Computes the cartesian product of given column vectors ( row
     vectors ).  The vector elements are assumend to be numbers.

     Alternatively the vectors can be specified by as a matrix, by its
     columns.

     To calculate the cartesian product of vectors, P = A x B x C x D
     ...  .  Requires A, B, C, D be column vectors.  The algorithm is
     iteratively calcualte the products, ( ( (A x B ) x C ) x D ) x etc.

            cartprod(1:2,3:4,0:1)
            ans =   1   3   0
                    2   3   0
                    1   4   0
                    2   4   0
                    1   3   1
                    2   3   1
                    1   4   1
                    2   4   1

See also: kron.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 71
Computes the cartesian product of given column vectors ( row vectors ).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
circulant_eig


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 698
 -- Function File: LAMBDA = circulant_eig (V)
 -- Function File: [VS, LAMBDA] = circulant_eig (V)

     Fast, compact calculation of eigenvalues and eigenvectors of a
     circulant matrix
     Given an N*1 vector V, return the eigenvalues LAMBDA and optionally
     eigenvectors VS of the N*N circulant matrix C that has V as its
     first column

     Theoretically same as 'eig(make_circulant_matrix(v))', but many
     fewer computations; does not form C explicitly

     Reference: Robert M. Gray, Toeplitz and Circulant Matrices: A
     Review, Now Publishers, http://ee.stanford.edu/~gray/toeplitz.pdf,
     Chapter 3

     See also: gallery, circulant_matrix_vector_product, circulant_inv.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Fast, compact calculation of eigenvalues and eigenvectors of a circulant
matrix




# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
circulant_inv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 855
 -- Function File: C = circulant_inv (V)

     Fast, compact calculation of inverse of a circulant matrix
     Given an N*1 vector V, return the inverse C of the N*N circulant
     matrix C that has V as its first column The returned C is the first
     column of the inverse, which is also circulant - to get the full
     matrix, use 'circulant_make_matrix(c)'

     Theoretically same as 'inv(make_circulant_matrix(v))(:, 1)', but
     requires many fewer computations and does not form matrices
     explicitly

     Roundoff may induce a small imaginary component in C even if V is
     real - use 'real(c)' to remedy this

     Reference: Robert M. Gray, Toeplitz and Circulant Matrices: A
     Review, Now Publishers, http://ee.stanford.edu/~gray/toeplitz.pdf,
     Chapter 3

     See also: gallery, circulant_matrix_vector_product, circulant_eig.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Fast, compact calculation of inverse of a circulant matrix
Given an N*1 vector V



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 21
circulant_make_matrix


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 872
 -- Function File: C = circulant_make_matrix (V)
     Produce a full circulant matrix given the first column.

     _Note:_ this function has been deprecated and will be removed in
     the future.  Instead, use 'gallery' with the the 'circul' option.
     To obtain the exactly same matrix, transpose the result, i.e.,
     replace 'circulant_make_matrix (V)' with 'gallery ("circul", V)''.

     Given an N*1 vector V, returns the N*N circulant matrix C where V
     is the left column and all other columns are downshifted versions
     of V.

     Note: If the first row R of a circulant matrix is given, the first
     column V can be obtained as 'v = r([1 end:-1:2])'.

     Reference: Gene H. Golub and Charles F. Van Loan, Matrix
     Computations, 3rd Ed., Section 4.7.7

     See also: gallery, circulant_matrix_vector_product, circulant_eig,
     circulant_inv.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
Produce a full circulant matrix given the first column.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
circulant_matrix_vector_product


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 731
 -- Function File: Y = circulant_matrix_vector_product (V, X)

     Fast, compact calculation of the product of a circulant matrix with
     a vector
     Given N*1 vectors V and X, return the matrix-vector product Y = CX,
     where C is the N*N circulant matrix that has V as its first column

     Theoretically the same as 'make_circulant_matrix(x) * v', but does
     not form C explicitly; uses the discrete Fourier transform

     Because of roundoff, the returned Y may have a small imaginary
     component even if V and X are real (use 'real(y)' to remedy this)

     Reference: Gene H. Golub and Charles F. Van Loan, Matrix
     Computations, 3rd Ed., Section 4.7.7

     See also: gallery, circulant_eig, circulant_inv.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Fast, compact calculation of the product of a circulant matrix with a
vector
Giv



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
cod


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 887
 -- Function File: [Q, R, Z] = cod (A)
 -- Function File: [Q, R, Z, P] = cod (A)
 -- Function File: [...] = cod (A, '0')
     Computes the complete orthogonal decomposition (COD) of the matrix
     A:
            A = Q*R*Z'
     Let A be an M-by-N matrix, and let 'K = min(M, N)'.  Then Q is
     M-by-M orthogonal, Z is N-by-N orthogonal, and R is M-by-N such
     that 'R(:,1:K)' is upper trapezoidal and 'R(:,K+1:N)' is zero.  The
     additional P output argument specifies that pivoting should be used
     in the first step (QR decomposition).  In this case,
            A*P = Q*R*Z'
     If a second argument of '0' is given, an economy-sized
     factorization is returned so that R is K-by-K.

     _NOTE_: This is currently implemented by double QR factorization
     plus some tricky manipulations, and is not as efficient as using
     xRZTZF from LAPACK.

     See also: qr.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Computes the complete orthogonal decomposition (COD) of the matrix A:
       A =



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
condeig


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 815
 -- Function File: C = condeig (A)
 -- Function File: [V, LAMBDA, C] = condeig (A)
     Compute condition numbers of the eigenvalues of a matrix.  The
     condition numbers are the reciprocals of the cosines of the angles
     between the left and right eigenvectors.

     Arguments
     ---------

        * A must be a square numeric matrix.

     Return values
     -------------

        * C is a vector of condition numbers of the eigenvalue of A.

        * V is the matrix of right eigenvectors of A.  The result is the
          same as for '[v, lambda] = eig (a)'.

        * LAMBDA is the diagonal matrix of eigenvalues of A.  The result
          is the same as for '[v, lambda] = eig (a)'.

     Example
     -------

          a = [1, 2; 3, 4];
          c = condeig (a)
          => [1.0150; 1.0150]


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Compute condition numbers of the eigenvalues of a matrix.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
funm


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1164
 -- Function File: B = funm (A, F)
     Compute matrix equivalent of function F; F can be a function name
     or a function handle and A must be a square matrix.

     For trigonometric and hyperbolic functions, 'thfm' is automatically
     invoked as that is based on 'expm' and diagonalization is avoided.
     For other functions diagonalization is invoked, which implies that
     -depending on the properties of input matrix A- the results can be
     very inaccurate _without any warning_.  For easy diagonizable and
     stable matrices results of funm will be sufficiently accurate.

     Note that you should not use funm for 'sqrt', 'log' or 'exp';
     instead use sqrtm, logm and expm as these are more robust.

     Examples:

            B = funm (A, sin);
            (Compute matrix equivalent of sin() )

            function bk1 = besselk1 (x)
               bk1 = besselk(x, 1);
            endfunction
            B = funm (A, besselk1);
            (Compute matrix equivalent of bessel function K1();
             a helper function is needed here to convey extra
             arguments for besselk() )

     See also: thfm, expm, logm, sqrtm.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Compute matrix equivalent of function F; F can be a function name or a
function 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
lobpcg


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9795
 -- Function File: [BLOCKVECTORX, LAMBDA] = lobpcg (BLOCKVECTORX,
          OPERATORA)
 -- Function File: [BLOCKVECTORX, LAMBDA, FAILUREFLAG] = lobpcg
          (BLOCKVECTORX, OPERATORA)
 -- Function File: [BLOCKVECTORX, LAMBDA, FAILUREFLAG, LAMBDAHISTORY,
          RESIDUALNORMSHISTORY] = lobpcg (BLOCKVECTORX, OPERATORA,
          OPERATORB, OPERATORT, BLOCKVECTORY, RESIDUALTOLERANCE,
          MAXITERATIONS, VERBOSITYLEVEL)
     Solves Hermitian partial eigenproblems using preconditioning.

     The first form outputs the array of algebraic smallest eigenvalues
     LAMBDA and corresponding matrix of orthonormalized eigenvectors
     BLOCKVECTORX of the Hermitian (full or sparse) operator OPERATORA
     using input matrix BLOCKVECTORX as an initial guess, without
     preconditioning, somewhat similar to:

          # for real symmetric operator operatorA
          opts.issym  = 1; opts.isreal = 1; K = size (blockVectorX, 2);
          [blockVectorX, lambda] = eigs (operatorA, K, 'SR', opts);

          # for Hermitian operator operatorA
          K = size (blockVectorX, 2);
          [blockVectorX, lambda] = eigs (operatorA, K, 'SR');

     The second form returns a convergence flag.  If FAILUREFLAG is 0
     then all the eigenvalues converged; otherwise not all converged.

     The third form computes smallest eigenvalues LAMBDA and
     corresponding eigenvectors BLOCKVECTORX of the generalized
     eigenproblem Ax=lambda Bx, where Hermitian operators OPERATORA and
     OPERATORB are given as functions, as well as a preconditioner,
     OPERATORT.  The operators OPERATORB and OPERATORT must be in
     addition _positive definite_.  To compute the largest eigenpairs of
     OPERATORA, simply apply the code to OPERATORA multiplied by -1.
     The code does not involve _any_ matrix factorizations of OPERATORA
     and OPERATORB, thus, e.g., it preserves the sparsity and the
     structure of OPERATORA and OPERATORB.

     RESIDUALTOLERANCE and MAXITERATIONS control tolerance and max
     number of steps, and VERBOSITYLEVEL = 0, 1, or 2 controls the
     amount of printed info.  LAMBDAHISTORY is a matrix with all
     iterative lambdas, and RESIDUALNORMSHISTORY are matrices of the
     history of 2-norms of residuals

     Required input:
        * BLOCKVECTORX (class numeric) - initial approximation to
          eigenvectors, full or sparse matrix n-by-blockSize.
          BLOCKVECTORX must be full rank.
        * OPERATORA (class numeric, char, or function_handle) - the main
          operator of the eigenproblem, can be a matrix, a function
          name, or handle

     Optional function input:
        * OPERATORB (class numeric, char, or function_handle) - the
          second operator, if solving a generalized eigenproblem, can be
          a matrix, a function name, or handle; by default if empty,
          'operatorB = I'.
        * OPERATORT (class char or function_handle) - the
          preconditioner, by default 'operatorT(blockVectorX) =
          blockVectorX'.

     Optional constraints input:
        * BLOCKVECTORY (class numeric) - a full or sparse n-by-sizeY
          matrix of constraints, where sizeY < n.  BLOCKVECTORY must be
          full rank.  The iterations will be performed in the
          (operatorB-) orthogonal complement of the column-space of
          BLOCKVECTORY.

     Optional scalar input parameters:
        * RESIDUALTOLERANCE (class numeric) - tolerance, by default,
          'residualTolerance = n * sqrt (eps)'
        * MAXITERATIONS - max number of iterations, by default,
          'maxIterations = min (n, 20)'
        * VERBOSITYLEVEL - either 0 (no info), 1, or 2 (with pictures);
          by default, 'verbosityLevel = 0'.

     Required output:
        * BLOCKVECTORX and LAMBDA (class numeric) both are computed
          blockSize eigenpairs, where 'blockSize = size (blockVectorX,
          2)' for the initial guess BLOCKVECTORX if it is full rank.

     Optional output:
        * FAILUREFLAG (class integer) as described above.
        * LAMBDAHISTORY (class numeric) as described above.
        * RESIDUALNORMSHISTORY (class numeric) as described above.

     Functions 'operatorA(blockVectorX)', 'operatorB(blockVectorX)' and
     'operatorT(blockVectorX)' must support BLOCKVECTORX being a matrix,
     not just a column vector.

     Every iteration involves one application of OPERATORA and
     OPERATORB, and one of OPERATORT.

     Main memory requirements: 6 (9 if 'isempty(operatorB)=0') matrices
     of the same size as BLOCKVECTORX, 2 matrices of the same size as
     BLOCKVECTORY (if present), and two square matrices of the size
     3*blockSize.

     In all examples below, we use the Laplacian operator in a 20x20
     square with the mesh size 1 which can be generated in MATLAB by
     running:
          A = delsq (numgrid ('S', 21));
          n = size (A, 1);

     or in MATLAB and Octave by:
          [~,~,A] = laplacian ([19, 19]);
          n = size (A, 1);

     Note that 'laplacian' is a function of the specfun octave-forge
     package.

     The following Example:
          [blockVectorX, lambda, failureFlag] = lobpcg (randn (n, 8), A, 1e-5, 50, 2);

     attempts to compute 8 first eigenpairs without preconditioning, but
     not all eigenpairs converge after 50 steps, so failureFlag=1.

     The next Example:
          blockVectorY = [];
          lambda_all = [];
          for j = 1:4
            [blockVectorX, lambda] = lobpcg (randn (n, 2), A, blockVectorY, 1e-5, 200, 2);
            blockVectorY           = [blockVectorY, blockVectorX];
            lambda_all             = [lambda_all' lambda']';
            pause;
          end

     attemps to compute the same 8 eigenpairs by calling the code 4
     times with blockSize=2 using orthogonalization to the previously
     founded eigenvectors.

     The following Example:
          R       = ichol (A, struct('michol', 'on'));
          precfun = @(x)R\(R'\x);
          [blockVectorX, lambda, failureFlag] = lobpcg (randn (n, 8), A, [], @(x)precfun(x), 1e-5, 60, 2);

     computes the same eigenpairs in less then 25 steps, so that
     failureFlag=0 using the preconditioner function 'precfun', defined
     inline.  If 'precfun' is defined as an octave function in a file,
     the function handle '@(x)precfun(x)' can be equivalently replaced
     by the function name 'precfun'.  Running:

          [blockVectorX, lambda, failureFlag] = lobpcg (randn (n, 8), A, speye (n), @(x)precfun(x), 1e-5, 50, 2);

     produces similar answers, but is somewhat slower and needs more
     memory as technically a generalized eigenproblem with B=I is solved
     here.

     The following example for a mostly diagonally dominant sparse
     matrix A demonstrates different types of preconditioning, compared
     to the standard use of the main diagonal of A:

          clear all; close all;
          n       = 1000;
          M       = spdiags ([1:n]', 0, n, n);
          precfun = @(x)M\x;
          A       = M + sprandsym (n, .1);
          Xini    = randn (n, 5);
          maxiter = 15;
          tol     = 1e-5;
          [~,~,~,~,rnp] = lobpcg (Xini, A, tol, maxiter, 1);
          [~,~,~,~,r]   = lobpcg (Xini, A, [], @(x)precfun(x), tol, maxiter, 1);
          subplot (2,2,1), semilogy (r'); hold on;
          semilogy (rnp', ':>');
          title ('No preconditioning (top)'); axis tight;
          M(1,2)  = 2;
          precfun = @(x)M\x; % M is no longer symmetric
          [~,~,~,~,rns] = lobpcg (Xini, A, [], @(x)precfun(x), tol, maxiter, 1);
          subplot (2,2,2), semilogy (r'); hold on;
          semilogy (rns', '--s');
          title ('Nonsymmetric preconditioning (square)'); axis tight;
          M(1,2)  = 0;
          precfun = @(x)M\(x+10*sin(x)); % nonlinear preconditioning
          [~,~,~,~,rnl] = lobpcg (Xini, A, [], @(x)precfun(x), tol, maxiter, 1);
          subplot (2,2,3),  semilogy (r'); hold on;
          semilogy (rnl', '-.*');
          title ('Nonlinear preconditioning (star)'); axis tight;
          M       = abs (M - 3.5 * speye (n, n));
          precfun = @(x)M\x;
          [~,~,~,~,rs] = lobpcg (Xini, A, [], @(x)precfun(x), tol, maxiter, 1);
          subplot (2,2,4),  semilogy (r'); hold on;
          semilogy (rs', '-d');
          title ('Selective preconditioning (diamond)'); axis tight;

     References
     ==========

     This main function 'lobpcg' is a version of the preconditioned
     conjugate gradient method (Algorithm 5.1) described in A. V.
     Knyazev, Toward the Optimal Preconditioned Eigensolver: Locally
     Optimal Block Preconditioned Conjugate Gradient Method, SIAM
     Journal on Scientific Computing 23 (2001), no.  2, pp.  517-541.
     <http://dx.doi.org/10.1137/S1064827500366124>

     Known bugs/features
     ===================

        * an excessively small requested tolerance may result in often
          restarts and instability.  The code is not written to produce
          an eps-level accuracy!  Use common sense.
        * the code may be very sensitive to the number of eigenpairs
          computed, if there is a cluster of eigenvalues not completely
          included, cf.
               operatorA = diag ([1 1.99 2:99]);
               [blockVectorX, lambda] = lobpcg (randn (100, 1),operatorA, 1e-10, 80, 2);
               [blockVectorX, lambda] = lobpcg (randn (100, 2),operatorA, 1e-10, 80, 2);
               [blockVectorX, lambda] = lobpcg (randn (100, 3),operatorA, 1e-10, 80, 2);

     Distribution
     ============

     The main distribution site: <http://math.ucdenver.edu/~aknyazev/>

     A C-version of this code is a part of the
     <http://code.google.com/p/blopex/> package and is directly
     available, e.g., in PETSc and HYPRE.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Solves Hermitian partial eigenproblems using preconditioning.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
ndcovlt


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 771
 -- Function File: Y = ndcovlt (X, T1, T2, ...)
     Computes an n-dimensional covariant linear transform of an n-d
     tensor, given a transformation matrix for each dimension.  The
     number of columns of each transformation matrix must match the
     corresponding extent of X, and the number of rows determines the
     corresponding extent of Y.  For example:

            size (X, 2) == columns (T2)
            size (Y, 2) == rows (T2)

     The element 'Y(i1, i2, ...)' is defined as a sum of

            X(j1, j2, ...) * T1(i1, j1) * T2(i2, j2) * ...

     over all j1, j2, ....  For two dimensions, this reduces to
            Y = T1 * X * T2.'

     [] passed as a transformation matrix is converted to identity
     matrix for the corresponding dimension.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Computes an n-dimensional covariant linear transform of an n-d tensor,
given a t



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
ndmult


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1719
 -- Function File: C = ndmult (A,B,DIM)
     Multidimensional scalar product

     Given multidimensional arrays A and B with entries A(i1,12,...,in)
     and B(j1,j2,...,jm) and the 1-by-2 dimesion array DIM with entries
     [N,K]. Assume that

          shape(A,N) == shape(B,K)

     Then the function calculates the product


          C (i1,...,iN-1,iN+1,...,in,j1,...,jK-1,jK+1,...,jm) =
           = sum_over_s A(i1,...,iN-1,s,iN+1,...,in)*B(j1,...,jK-1,s,jK+1,...,jm)


     For example if 'size(A) == [2,3,4]' and 'size(B) == [5,3]' then the
     'C = ndmult(A,B,[2,2])' produces 'size(C) == [2,4,5]'.

     This function is useful, for example, when calculating grammian
     matrices of a set of signals produced from different experiments.
            nT      = 100;
            t       = 2*pi*linspace (0,1,nT)';
            signals = zeros(nT,3,2); % 2 experiments measuring 3 signals at nT timestamps

            signals(:,:,1) = [sin(2*t) cos(2*t) sin(4*t).^2];
            signals(:,:,2) = [sin(2*t+pi/4) cos(2*t+pi/4) sin(4*t+pi/6).^2];

            sT(:,:,1) = signals(:,:,1)';
            sT(:,:,2) = signals(:,:,2)';
            G = ndmult (signals,sT,[1 2]);

     In the example G contains the scalar product of all the singals
     against each other.  This can be verified in the following way:
            sA = 1 eA = 1; % First signal in first experiment;
            sB = 1 eA = 2; % First signal in second experiment;
            [G(s1,e1,s2,e2)  signals(:,s1,e1)'*signals(:,s2,e2)]
     You may want to reoeder the scalar products into a 2-by-2
     arrangement (representing pairs of experiments) of gramian
     matrices.  The following command 'G = permute(G,[1 3 2 4])' does
     it.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
Multidimensional scalar product



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
nmf_bpas


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3864
 -- Function File: [W, H, ITER, HIS] = nmf_bpas (A, K)
     Nonnegative Matrix Factorization by Alternating Nonnegativity
     Constrained Least Squares using Block Principal Pivoting/Active Set
     method.

     This function solves one the following problems: given A and K,
     find W and H such that

     (1) minimize 1/2 * || A-WH ||_F^2

     (2) minimize 1/2 * ( || A-WH ||_F^2 + alpha * || W ||_F^2 + beta *
     || H ||_F^2 )

     (3) minimize 1/2 * ( || A-WH ||_F^2 + alpha * || W ||_F^2 + beta *
     (sum_(i=1)^n || H(:,i) ||_1^2 ) )

     where W>=0 and H>=0 elementwise.  The input arguments are A : Input
     data matrix (m x n) and K : Target low-rank.

     *Optional Inputs*
     'Type'
          Default is 'regularized', which is recommended for quick
          application testing unless 'sparse' or 'plain' is explicitly
          needed.  If sparsity is needed for 'W' factor, then apply this
          function for the transpose of 'A' with formulation (3).  Then,
          exchange 'W' and 'H' and obtain the transpose of them.
          Imposing sparsity for both factors is not recommended and thus
          not included in this software.
          'plain'
               to use formulation (1)
          'regularized'
               to use formulation (2)
          'sparse'
               to use formulation (3)

     'NNLSSolver'
          Default is 'bp', which is in general faster.
               item 'bp' to use the algorithm in [1] item 'as' to use
               the algorithm in [2]

     'Alpha'
          Parameter alpha in the formulation (2) or (3).  Default is the
          average of all elements in A. No good justfication for this
          default value, and you might want to try other values.
     'Beta'
          Parameter beta in the formulation (2) or (3).  Default is the
          average of all elements in A. No good justfication for this
          default value, and you might want to try other values.
     'MaxIter'
          Maximum number of iterations.  Default is 100.
     'MinIter'
          Minimum number of iterations.  Default is 20.
     'MaxTime'
          Maximum amount of time in seconds.  Default is 100,000.
     'Winit'
          (m x k) initial value for W.
     'Hinit'
          (k x n) initial value for H.
     'Tol'
          Stopping tolerance.  Default is 1e-3.  If you want to obtain a
          more accurate solution, decrease TOL and increase MAX_ITER at
          the same time.
     'Verbose'
          If present the function will show information during the
          calculations.

     *Outputs*
     'W'
          Obtained basis matrix (m x k)
     'H'
          Obtained coefficients matrix (k x n)
     'iter'
          Number of iterations
     'HIS'
          If present the history of computation is returned.

     Usage Examples:
           nmf_bpas (A,10)
           nmf_bpas (A,20,'verbose')
           nmf_bpas (A,30,'verbose','nnlssolver','as')
           nmf_bpas (A,5,'verbose','type','sparse')
           nmf_bpas (A,60,'verbose','type','plain','Winit',rand(size(A,1),60))
           nmf_bpas (A,70,'verbose','type','sparse','nnlssolver','bp','alpha',1.1,'beta',1.3)

     References: [1] For using this software, please cite:
     Jingu Kim and Haesun Park, Toward Faster Nonnegative Matrix
     Factorization: A New Algorithm and Comparisons,
     In Proceedings of the 2008 Eighth IEEE International Conference on
     Data Mining (ICDM'08), 353-362, 2008
     [2] If you use 'nnls_solver'='as' (see below), please cite:
     Hyunsoo Kim and Haesun Park, Nonnegative Matrix Factorization Based

     on Alternating Nonnegativity Constrained Least Squares and Active
     Set Method,
     SIAM Journal on Matrix Analysis and Applications, 2008, 30, 713-730

     Check original code at <http://www.cc.gatech.edu/~jingu>

     See also: nmf_pg.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Nonnegative Matrix Factorization by Alternating Nonnegativity
Constrained Least 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
nmf_pg


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 910
 -- Function File: [W, H] = nmf_pg (V, WINIT, HINIT, TOL, TIMELIMIT,
          MAXITER)

     Non-negative matrix factorization by alternative non-negative least
     squares using projected gradients.

     The matrix V is factorized into two possitive matrices W and H such
     that 'V = W*H + U'.  Where U is a matrix of residuals that can be
     negative or positive.  When the matrix V is positive the order of
     the elements in U is bounded by the optional named argument TOL
     (default value '1e-9').

     The factorization is not unique and depends on the inital guess for
     the matrices W and H.  You can pass this initalizations using the
     optional named arguments WINIT and HINIT.

     timelimit, maxiter: limit of time and iterations

     Examples:

            A     = rand(10,5);
            [W H] = nmf_pg(A,tol=1e-3);
            U     = W*H -A;
            disp(max(abs(U)));


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Non-negative matrix factorization by alternative non-negative least
squares usin



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
rotparams


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 447
 -- Function File: [VSTACKED, ASTACKED] = rotparams (RSTACKED)
     The function w = rotparams (r) - Inverse to rotv().  Using, W =
     rotparams(R) is such that rotv(w)*r' == eye(3).

     If used as, [v,a]=rotparams(r) , idem, with v (1 x 3) s.t.  w ==
     a*v.

     0 <= norm(w)==a <= pi

     :-O !!  Does not check if 'r' is a rotation matrix.

     Ignores matrices with zero rows or with NaNs.  (returns 0 for them)

     See also: rotv.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
The function w = rotparams (r) - Inverse to rotv().



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
rotv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 498
 -- Function File: R = rotv ( v, ang )
     The functionrotv calculates a Matrix of rotation about V w/ angle
     |v| r = rotv(v [,ang])

     Returns the rotation matrix w/ axis v, and angle, in radians,
     norm(v) or ang (if present).

     rotv(v) == w'*w + cos(a) * (eye(3)-w'*w) - sin(a) * crossmat(w)

     where a = norm (v) and w = v/a.

     v and ang may be vertically stacked : If 'v' is 2x3, then rotv( v )
     == [rotv(v(1,:)); rotv(v(2,:))]



     See also: rotparams, rota, rot.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
The functionrotv calculates a Matrix of rotation about V w/ angle |v| r
= rotv(v



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
smwsolve


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 612
 -- Function File: X = smwsolve (A, U, V, B)
 -- Function File: smwsolve (SOLVER, U, V, B)
     Solves the square system '(A + U*V')*X == B', where U and V are
     matrices with several columns, using the Sherman-Morrison-Woodbury
     formula, so that a system with A as left-hand side is actually
     solved.  This is especially advantageous if A is diagonal, sparse,
     triangular or positive definite.  A can be sparse or full, the
     other matrices are expected to be full.  Instead of a matrix A, a
     user may alternatively provide a function SOLVER that performs the
     left division operation.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Solves the square system '(A + U*V')*X == B', where U and V are matrices
with se



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
thfm


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 692
 -- Function File: Y = thfm (X, MODE)
     Trigonometric/hyperbolic functions of square matrix X.

     MODE must be the name of a function.  Valid functions are 'sin',
     'cos', 'tan', 'sec', 'csc', 'cot' and all their inverses and/or
     hyperbolic variants, and 'sqrt', 'log' and 'exp'.

     The code 'thfm (x, 'cos')' calculates matrix cosinus _even if_
     input matrix X is _not_ diagonalizable.

     _Important note_: This algorithm does _not_ use an eigensystem
     similarity transformation.  It maps the MODE functions to functions
     of 'expm', 'logm' and 'sqrtm', which are known to be robust with
     respect to non-diagonalizable ('defective') X.

     See also: funm.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Trigonometric/hyperbolic functions of square matrix X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
vec_projection


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 455
 -- Function File: OUT = vec_projection (X, Y)
     Compute the vector projection of a 3-vector onto another.  X : size
     1 x 3 and Y : size 1 x 3 TOL : size 1 x 1

               vec_projection ([1,0,0], [0.5,0.5,0])
               => 0.70711

     Vector projection of X onto Y, both are 3-vectors, returning the
     value of X along Y.  Function uses dot product, Euclidean norm, and
     angle between vectors to compute the proper length along Y.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Compute the vector projection of a 3-vector onto another.