/usr/share/octave/packages/msh-1.0.10/doc-cache is in octave-msh 1.0.10-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 | # doc-cache created by Octave 4.2.1
# name: cache
# type: cell
# rows: 3
# columns: 21
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 28
msh2m_displacement_smoothing
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1448
-- Function File: [AX,AY] = msh2m_displacement_smoothing(MSH,K)
Displace the boundary of a 2D mesh setting a spring with
force/length constant K along each edge and enforcing equilibrium.
This function builds matrices containing the resulting (linearized)
equation for x and y coordinates of each mesh node. Boundary
conditions enforcing the displacement (Dirichlet type problem) or
the force (Neumann type) at the boundary must be added to make the
system solvable, e.g.:
msh = msh2m_structured_mesh(linspace(0,1,10), linspace(0,1,10), 1,1:4,"left");
dnodes = msh2m_nodes_on_sides(msh,1:4);
varnodes = setdiff([1:columns(msh.p)],dnodes);
xd = msh.p(1,dnodes)';
yd = msh.p(2,dnodes)';
dx = dy = zeros(columns(msh.p),1);
dxtot = dytot = -.5*sin(xd.*yd*pi/2);
Nsteps = 10;
for ii = 1:Nsteps
dx(dnodes) = dxtot;
dy(dnodes) = dytot;
[Ax,Ay] = msh2m_displacement_smoothing(msh,1);
dx(varnodes) = Ax(varnodes,varnodes) \ ...
(-Ax(varnodes,dnodes)*dx(dnodes));
dy(varnodes) = Ay(varnodes,varnodes) \ ...
(-Ay(varnodes,dnodes)*dy(dnodes));
msh.p += [ dx'/Nsteps; dy'/Nsteps ] ;
triplot(msh.t(1:3,:)',msh.p(1,:)',msh.p(2,:)');
pause(.01)
endfor
See also: msh2m_jiggle_mesh.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Displace the boundary of a 2D mesh setting a spring with force/length
constant K
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 19
msh2m_equalize_mesh
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 384
-- Function File: [MESH] = msh2m_equalize_mesh(MESH)
Apply a baricentric regularization to equalize the size of triangle
edges, i.e. move each node to the center of mass of the patch of
triangles to which it belongs.
May be useful when distorting a mesh. Type 'demo
msh2m_equalize_mesh' to see some examples.
See also: msh2m_displacement_smoothing.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 79
Apply a baricentric regularization to equalize the size of triangle
edges, i.e.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 28
msh2m_geometrical_properties
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1921
-- Function File: [VARARGOUT] =
msh2m_geometrical_properties(MESH,[STRING1,STRING2,...])
Compute MESH geometrical properties identified by input strings.
Valid properties are:
* '"bar"': return a matrix with size 2 times the number of mesh
elements containing the center of mass coordinates.
* '"cir"': return a matrix with size 2 times the number of mesh
elements containing the circumcenter coordinates.
* '"emidp"': return a matrix with size 2 times the number of
side edges containing their midpoint coordinates.
* '"slength"': return a matrix with size 3 times the number of
mesh elements containing the length of each element side.
* '"cdist"': return a matrix of size 3 times the number of mesh
elements containing the distance among circumcenters of
neighbouring elements. If the corresponding side lies on the
edge, the distance between circumcenter and border edge is
returned in the matrix.
* '"wjacdet"': return the weigthed Jacobian determinant used for
the numerical integration with trapezoidal rule over an
element.
* '"shg"': return a matrix of size 3 times the number of
elements matrix containing the gradient of P1 shape functions.
* '"area"': return a row vector containing the area of every
element.
* '"midedge"': return a multi-dimensional array with size 2
times 3 times the number of elements containing the
coordinates of the midpoint of every edge.
The output will contain the geometrical properties requested in the
input in the same order specified in the function call.
If an unexpected string is given as input, an empty vector is
returned in output.
See also: msh2m_topological_properties,
msh3m_geometrical_properties.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Compute MESH geometrical properties identified by input strings.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
msh2m_gmsh
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 798
-- Function File: [MESH] = msh2m_gmsh(GEOMETRY,OPTION,VALUE,...)
-- Function File: [MESH, GMSH_OUT] = msh2m_gmsh(...)
Construct an unstructured triangular 2D mesh making use of the free
software gmsh.
The compulsory argument GEOMETRY is the basename of the '*.geo'
file to be meshed.
The optional arguments OPTION and VALUE identify respectively a
gmsh option and its value. For more information regarding the
possible option to pass, refer to gmsh manual or gmsh site
<http://www.geuz.org/gmsh/>.
The returned value MESH is a PDE-tool like mesh structure. If the
function is called with two outputs GMSH_OUT is the verbose output
of the gmsh subprocess.
See also: msh2m_structured_mesh, msh3m_gmsh,
msh2m_mesh_along_spline.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Construct an unstructured triangular 2D mesh making use of the free
software gms
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
msh2m_gmsh_write
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 87
-- Function File: = msh2m_gmsh_write (FILENAME, MSH)
See also: msh3m_gmsh_write.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 27
See also: msh3m_gmsh_write.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 17
msh2m_jiggle_mesh
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 557
-- Function File: [NEWMSH] = msh2m_jiggle_mesh(MSH,STEPS)
Equalize the size of triangle edges setting a spring of rest length
FACTOR*AREA along each edge of the mesh and solving for static
equilibrium.
The non-linear eqautions of the system obtained are solved via a
non-linear Gauss-Seidel method. STEP is the number of steps of the
method to be applied.
May be useful when distorting a mesh, type 'demo msh2m_jiggle_mesh'
to see some examples.
See also: msh2m_displacement_smoothing, msh2m_equalize_mesh.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Equalize the size of triangle edges setting a spring of rest length
FACTOR*AREA
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
msh2m_join_structured_mesh
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 419
-- Function File: [MESH] =
msh2m_join_structured_mesh(MESH1,MESH2,S1,S2)
Join the two structured meshes MESH1 and MESH2 into one single
mesh.
The two meshes must share a common edge identified by S1 and S2.
*WARNING*: the two meshes must share the same vertexes on the
common edge.
See also: msh2m_structured_mesh, msh2m_gmsh, msh2m_submesh,
msh3m_join_structured_mesh.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Join the two structured meshes MESH1 and MESH2 into one single mesh.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
msh2m_mesh_along_spline
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 706
-- Function File: [MESH] = msh2m_mesh_along_spline(XC,YC,NNX,NNY,SIGMA)
Generate a structured mesh in a thin layer of size SIGMA sitting on
a natural Catmull-Rom type cubic spline with control points XC, YC.
If NNX and NNY are scalars, the mesh has NNX nodes in the direction
along the spline and NNY in the normal direction.
If NNX and NNY are vectors they indicate the curvilinear
coordinates of the mesh nodes.
The returned value MESH is a PDE-tool like mesh structure.
Be aware that if SIGMA is not much smaller than the curvature of
the line the resulting mesh may be invalid.
See also: msh2m_structured_mesh, msh2m_gmsh, msh3m_structured_mesh.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Generate a structured mesh in a thin layer of size SIGMA sitting on a
natural Ca
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
msh2m_nodes_on_sides
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 251
-- Function File: [NODELIST] = msh2m_nodes_on_sides(MESH,SIDELIST)
Return a list of MESH nodes lying on the sides specified in
SIDELIST.
See also: msh2m_geometrical_properties,
msh2m_topological_properties, msh3m_nodes_on_faces.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
Return a list of MESH nodes lying on the sides specified in SIDELIST.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 21
msh2m_structured_mesh
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2108
-- Function File: [MESH] =
msh2m_structured_mesh(X,Y,REGION,SIDES,STRING)
Construct a structured triangular 2D mesh on a rectangular domain.
* X and Y are the one dimensional mesh vector of the
corresponding Cartesian axis.
* REGION is a number identifying the geometrical surface region,
while SIDES is a 4 components vector containing the numbers
used to identify the geometrical side edges.
* STRING is an optional value specifying the orientation of the
diagonal edge of the structured mesh. It may take the value
'"right"' (default), '"left"', '"random"'.
The returned value MESH is a PDE-tool like mesh structure composed
of the following fields:
- P: matrix with size 2 times number of mesh points.
* 1st row: x-coordinates of the points.
* 2nd row: y-coordinates of the points.
- E: matrix with size 7 times number of mesh side edges.
* 1st row: number of the first vertex of the side edge.
* 2nd row: number of the second vertex of the side edge.
* 3rd row: set to 0, present for compatibility with MatLab
PDE-tool.
* 4th row: set to 0, present for compatibility with MatLab
PDE-tool.
* 5th row: number of the geometrical border containing the
side edge.
* 6th row: number of the geometrical surface to the right
of side edge.
* 7th row: number of the geometrical surface to the left of
the side edge.
- T: matrix with size 4 times number of mesh elements.
* 1st row: number of the first vertex of the element.
* 2nd row: number of the second vertex of the element.
* 3rd row: number of the third vertex of the element.
* 4th row: number of the geometrical surface containing the
element.
See also: msh3m_structured_mesh, msh2m_gmsh,
msh2m_mesh_along_spline, msh2m_join_structured_mesh, msh2m_submesh.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Construct a structured triangular 2D mesh on a rectangular domain.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
msh2m_submesh
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 534
-- Function File: [OMESH,NODELIST,ELEMENTLIST] =
msh2m_submesh(IMESH,INTRFC,SDL)
Extract the subdomain(s) in SDL from IMESH.
The row vector INTRFC contains the internal interface sides to be
maintained (field 'mesh.e(5,:)'). It can be empty.
Return the vectors NODELIST and ELEMENTLIST containing respectively
the list of nodes and elements of the original mesh that are part
of the selected subdomain(s).
See also: msh2m_join_structured_mesh, msh3m_submesh,
msh3e_surface_mesh.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Extract the subdomain(s) in SDL from IMESH.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 28
msh2m_topological_properties
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1723
-- Function File: [VARARGOUT] =
msh2m_topological_properties(MESH,[STRING1,STRING2,...])
Compute MESH topological properties identified by input strings.
Valid properties are:
* '"n"': return a matrix with size 3 times the number of mesh
elements containing the list of its neighbours. The entry
'M(i,j)' in this matrix is the mesh element sharing the side
'i' of triangle 'j'. If no such element exists (i.e. for
boundary edges) a value of 'NaN' is set.
* '"sides"': return a matrix with size 2 times number of
sides.The entry 'M(i,j)' is the index of the i-th vertex of
j-th side.
* '"ts"': return a matrix with size 3 times the number of mesh
elements containing the sides associated with each element.
* '"tws"':return a matrix with size 2 times the number of mesh
sides containing the elements associated with each side. For
a side belonging to one triangle only a value of 'NaN' is set.
* '"coinc"': return a matrix with 2 rows. Each column contains
the indices of two triangles sharing the same circumcenter.
* '"boundary"': return a matrix with size 2 times the number of
side edges. The first row contains the mesh element to which
the side belongs, the second row is the local index of this
edge.
The output will contain the geometrical properties requested in the
input in the same order specified in the function call.
If an unexpected string is given as input, an empty vector is
returned in output.
See also: mshm2m_geometrical_properties,
msh3m_geometrical_properties.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Compute MESH topological properties identified by input strings.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
msh2p_mesh
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 143
-- Function File: msh2p_mesh(MESH, LINESPEC)
Plot MESH with the line specification in LINESPEC using 'triplot'.
See also: triplot.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Plot MESH with the line specification in LINESPEC using 'triplot'.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
msh3e_surface_mesh
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 593
-- Function File: [EMESH,SNODES,SSIDES,STRIANGLES] =
msh3e_surface_mesh(MESH,NSRF,NSIDES)
Extract the plane surface NSRF delimited by NSIDES from MESH.
Return the vector SNODES containing the references to input mesh
nodes (field 'mesh.p'), the vector SSIDES containing the references
to input mesh side (field 'mesh.s') and the vector STRIANGLES
containing the references to input mesh side edges (field
'mesh.e').
*WARNING*: the suface MUST be ortogonal to either X, Y or Z axis.
This should be changed to account for generic 2D surface.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 61
Extract the plane surface NSRF delimited by NSIDES from MESH.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 28
msh3m_geometrical_properties
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1119
-- Function File: [VARARGOUT] =
msh3m_geometrical_properties(MESH,[STRING1,STRING2,...])
Compute MESH geometrical properties identified by input strings.
Valid properties are:
* '"bar"': return a matrix with size 3 times the number of mesh
elements containing the center of mass coordinates.
* '"wjacdet"': return the weigthed Jacobian determinant used for
the numerical integration with trapezoidal rule over an
element.
* '"shg"': return a matrix of size 3 times the number of
elements matrix containing the gradient of P1 shape functions.
* '"shp"': return a matrix containing the the value of P1 shape
functions.
* '"area"': return a row vector containing the volume of each
element.
The output will contain the geometrical properties requested in the
input in the same order specified in the function call.
If an unexpected string is given as input, an empty vector is
returned in output.
See also: msh2m_topological_properties,
msh2m_geometrical_properties.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Compute MESH geometrical properties identified by input strings.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
msh3m_gmsh
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 797
-- Function File: [MESH] = msh3m_gmsh(GEOMETRY,OPTION,VALUE,...)
-- Function File: [MESH, GMSH_OUT] = msh3m_gmsh(...)
Construct an unstructured tetrahedral 3D mesh making use of the
free software gmsh.
The required argument GEOMETRY is the basename of the '*.geo' file
to be meshed.
The optional arguments OPTION and VALUE identify respectively a
gmsh option and its value. For more information regarding the
possible option to pass, refer to gmsh manual or gmsh site
<http://www.geuz.org/gmsh/>.
The returned value MESH is a PDE-tool like mesh structure. If the
function is called with two outputs GMSH_OUT is the verbose output
of the gmsh subprocess.
See also: msh3m_structured_mesh, msh2m_gmsh,
msh2m_mesh_along_spline.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Construct an unstructured tetrahedral 3D mesh making use of the free
software gm
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 16
msh3m_gmsh_write
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 87
-- Function File: = msh3m_gmsh_write (FILENAME, MSH)
See also: msh2m_gmsh_write.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 27
See also: msh2m_gmsh_write.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
msh3m_join_structured_mesh
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 419
-- Function File: [MESH] =
msh3m_join_structured_mesh(MESH1,MESH2,S1,S2)
Join the two structured meshes MESH1 and MESH2 into one single
mesh.
The two meshes must share a common face identified by S1 and S2.
*WARNING*: the two meshes must share the same vertexes on the
common face.
See also: msh3m_structured_mesh, msh3m_gmsh, msh3m_submesh,
msh2m_join_structured_mesh.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Join the two structured meshes MESH1 and MESH2 into one single mesh.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 20
msh3m_nodes_on_faces
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 216
-- Function File: [NODELIST] = msh3m_nodes_on_faces(MESH,FACELIST)
Return a list of MESH nodes lying on the faces specified in
FACELIST.
See also: msh3m_geometrical_properties, msh2m_nodes_on_faces.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
Return a list of MESH nodes lying on the faces specified in FACELIST.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 21
msh3m_structured_mesh
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2290
-- Function File: [MESH] = msh3m_structured_mesh(X,Y,Z,REGION,SIDES)
Construct a structured tetrahedral 3D mesh on a parallelepipedal
domain.
* X, Y and Z are the one dimensional mesh vector of the
corresponding Cartesian axis.
* REGION is a number identifying the geometrical volume, while
SIDES is a 6 components vector containing the numbers used to
identify the geometrical face edges.
The returned value MESH is a PDE-tool like mesh structure composed
of the following fields:
- P: matrix with size 3 times number of mesh points.
* 1st row: x-coordinates of the points.
* 2nd row: y-coordinates of the points.
* 3rd row: z-coordinates of the points.
- E: matrix with size 10 times number of mesh face edges.
* 1st row: number of the first vertex of the face edge.
* 2nd row: number of the second vertex of the face edge.
* 3rd row: number of the third vertex of the face edge.
* 4th row: set to 0, present for compatibility with MatLab
PDE-tool.
* 5th row: set to 0, present for compatibility with MatLab
PDE-tool.
* 6th row: set to 0, present for compatibility with MatLab
PDE-tool.
* 7th row: set to 0, present for compatibility with MatLab
PDE-tool.
* 8th row: number of the geometrical volume to the right of
the face edge.
* 9th row: number of the geometrical volume to the left of
the face edge.
* 10th row: number of the geometrical border containing the
face edge.
- T: matrix with size 5 times number of mesh elements.
* 1st row: number of the first vertex of the element.
* 2nd row: number of the second vertex of the element.
* 3rd row: number of the third vertex of the element.
* 4th row: number of the fourth vertex of the element.
* 5th row: number of the geometrical volume containing the
element.
See also: msh2m_structured_mesh, msh3m_gmsh,
msh2m_mesh_along_spline, msh3m_join_structured_mesh, msh3m_submesh.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
Construct a structured tetrahedral 3D mesh on a parallelepipedal domain.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
msh3m_submesh
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 542
-- Function File: [OMESH,NODELIST,ELEMENTLIST] =
msh3m_submesh(IMESH,INTRFC,SDL)
Extract the subdomain(s) in SDL from IMESH.
The row vector INTRFC contains the internal interface sides to be
maintained (field 'mesh.e(5,:)'). It can be empty.
Return the vectors NODELIST and ELEMENTLIST containing respectively
the list of nodes and elements of the original mesh that are part
of the selected subdomain(s).
See also: msh3m_join_structured_mesh, msh2m_join_structured_mesh,
msh3m_submesh.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Extract the subdomain(s) in SDL from IMESH.
|