This file is indexed.

/usr/share/octave/packages/nurbs-1.3.13/bspeval.m is in octave-nurbs 1.3.13-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
function p = bspeval(d,c,k,u)

% BSPEVAL:  Evaluate B-Spline at parametric points.
% 
% Calling Sequence:
% 
%   p = bspeval(d,c,k,u)
% 
%    INPUT:
% 
%       d - Degree of the B-Spline.
%       c - Control Points, matrix of size (dim,nc).
%       k - Knot sequence, row vector of size nk.
%       u - Parametric evaluation points, row vector of size nu.
% 
%    OUTPUT:
%
%       p - Evaluated points, matrix of size (dim,nu)
% 
%    Copyright (C) 2000 Mark Spink, 2007 Daniel Claxton, 2010 C. de Falco
%
%    This program is free software: you can redistribute it and/or modify
%    it under the terms of the GNU General Public License as published by
%    the Free Software Foundation, either version 3 of the License, or
%    (at your option) any later version.

%    This program is distributed in the hope that it will be useful,
%    but WITHOUT ANY WARRANTY; without even the implied warranty of
%    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
%    GNU General Public License for more details.
%
%    You should have received a copy of the GNU General Public License
%    along with this program.  If not, see <http://www.gnu.org/licenses/>.

nu = numel(u);
[mc,nc] = size(c);
                                                %   int bspeval(int d, double *c, int mc, int nc, double *k, int nk, double *u,int nu, double *p){
                                                %   int ierr = 0;
                                                %   int i, s, tmp1, row, col;
                                                %   double tmp2;
                                                %
                                                %   // Construct the control points
                                                %   double **ctrl = vec2mat(c,mc,nc);
                                                %
                                                %   // Contruct the evaluated points
                                                %   double **pnt = vec2mat(p,mc,nu);
                                                %
                                                %   // space for the basis functions
%N = zeros(d+1,1);                               %   double *N = (double*) mxMalloc((d+1)*sizeof(double));
                                                %
                                                %   // for each parametric point i
%for col=1:nu                                    %   for (col = 0; col < nu; col++) {
                                                %     // find the span of u[col]
    s = findspan(nc-1, d, u(:), k);           %     s = findspan(nc-1, d, u[col], k);
    N = basisfun(s,u(:),d,k);                 %     basisfun(s, u[col], d, k, N);
                                                %
    tmp1 = s - d + 1;                           %     tmp1 = s - d;
    %for row=1:mc                                %     for (row = 0; row < mc; row++)  {
        p = zeros (mc, nu);                               %       tmp2 = 0.0;
        for i=0:d                               %       for (i = 0; i <= d; i++)
           p = p + repmat (N(:,i+1)', mc, 1).*c(:,tmp1+i);  % 	tmp2 += N[i] * ctrl[tmp1+i][row];
        end                                     %
        %p(row,:) = tmp2;                      %       pnt[col][row] = tmp2;
    %end                                         %     }
%end                                             %   }
                                                %
                                                %   mxFree(N);
                                                %   freevec2mat(pnt);
                                                %   freevec2mat(ctrl);
                                                %
                                                %   return ierr;
end                                             %   }