/usr/share/octave/packages/nurbs-1.3.13/nrb2iges.m is in octave-nurbs 1.3.13-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 | function nrb2iges (nurbs, filename)
% NRB2IGES : Write a NURBS curve or surface to an IGES file.
%
% Calling Sequence:
%
% nrb2iges (nurbs, filename);
%
% INPUT:
%
% nurbs : NURBS curve or surface, see nrbmak.
% filename : name of the output file.
%
% Description:
%
% The data of the nurbs structure is written in a file following the IGES
% format. For a more in-depth explanation see, for example:
% <http://engineeronadisk.com/V2/notes_design/engineeronadisk-76.html>.
%
% Copyright (C) 2014 Jacopo Corno
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%
% This file is based on nurbs2iges.m, (C) 2006 Fu Qiang, originally
% released under the MIT license.
dt = datestr (now, 'yyyy.mm.dd');
dim = numel (nurbs(1).order);
% START SECTION
S{1} = '';
S{2} = 'IGES obtained from Nurbs toolbox.';
S{3} = 'See <http://octave.sourceforge.net/nurbs/>.';
S{4} = '';
% GLOBAL SECTION
G{1} = '1H,'; % Parameter Deliminator Character
G{2} = '1H;'; % Record Delimiter Character
G{3} = HString ('Nurbs toolbox'); % Product ID from Sender
G{4} = HString (filename); % File Name
G{5} = HString ('Octave Nurbs'); % System ID
G{6} = HString ('nrb2iges'); % Pre-processor Version
G{7} = '32'; % Number of Bits for Integers (No. of bits present in the integer representation of the sending system)
G{8} = '75'; % Single Precision Magnitude (Maximum power of 10 which may be represented as a single precision floating point number from the sending system)
G{9} = '6'; % Single Precision Significance (No. of significant digits of a single precision floating point number on the sending system)
G{10}= '75'; % Double Precision Magnitude (Maximum power of 10 which may be represented as a double precision floating point number from the sending system)
G{11}= '15'; % Double Precision Significance (No. of significant digits of a double precision floating point number on the sending system)
G{12}= HString('Nurbs from Octave'); % Product ID for Receiver
G{13}= '1.0'; % Model Space Scale
G{14}= '6'; % Unit Flag (6 = metres)
G{15}= HString('M'); % Units (metres = "M")
G{16}= '1000'; % Maximum Number of Line Weights
G{17}= '1.0'; % Size of Maximum Line Width
G{18}= HString(dt); % Date and Time of file generation
G{19}= '0.000001'; % Minimum User-intended Resolution
G{20}= '10000.0'; % Approximate Maximum Coordinate
G{21}= HString('Jacopo Corno'); % Name of Author
G{22}= HString('GSCE - TU Darmstadt'); % Author's Organization
G{23}= '3'; % IGES Version Number (3 = IGES version 2.0)
G{24}= '0'; % Drafting Standard Code (0 = no standard)
% Convert section array to lines (maximum lenght 72)
SectionG = make_section (G, 72);
% DIRECTORY ENTRY SECTION
% Each directory entry consists of two, 80 character, fixed formatted lines
D = [];
for ii = 1:length (nurbs)
switch (dim)
case 1 % NURBS curve
D(ii).type = 126;
case 2 % NURBS surface
D(ii).type = 128;
otherwise
error ('Only curves and surfaces can be saved in IGES format.')
end
D(ii).id = 2*ii - 1; % odd counter (see Parameter data section)
D(ii).p_start = 0;
D(ii).p_count = 0;
end
% PARAMETER DATA SECTION
% The structure is a free formatted data entry from columns 1 to 64.
% Each line of free formatted data consists of the entity type number
% followed by the parameter data describing the entity.
% Columns 65 to 72 are reserved for a parameter data index which is an
% odd number counter, right justified in the field, which begins at the
% number 1 and progresses in odd increments for each entity entered.
% Column 73 is reserved for the letter �P� to indicate the data element
% belongs to the parameter data section.
% Columns 74 to 80 are reserved for the sequence number. Each line of
% data corresponds to the entity type as specified in the global section.
SectionP = {};
for ii = 1:length (nurbs)
P = make_section_array (nurbs(ii)); % finish one entity
% Convert section array to lines
SP = make_section (P, 64);
D(ii).p_count = length (SP);
if (ii == 1)
D(ii).p_start = 1;
else
D(ii).p_start = D(ii-1).p_start + D(ii-1).p_count;
end
SectionP{ii} = SP;
end
% SAVE
fid = fopen (filename, 'w');
% Save Start Section
for ii = 1:length (S)
fprintf (fid, '%-72sS%7d\n', S{ii}, ii);
end
% Save Global Section
for ii = 1:length (SectionG)
fprintf (fid, '%-72sG%7d\n', SectionG{ii}, ii);
end
% Save Directory Entry Section
for i = 1:length (D)
fprintf (fid, '%8d%8d%8d%8d%8d%8d%8d%8d%8dD%7d\n', ...
D(i).type, D(i).p_start, 0, 0 ,0, 0, 0, 0, 0, i*2-1);
fprintf (fid, '%8d%8d%8d%8d%8d%8s%8s%8s%8dD%7d\n', ...
D(i).type, 0, 0, D(i).p_count, 0, ' ', ' ', ' ', 0, i*2);
end
% Save Parameter Data Section
lines_p = 0;
for jj = 1:length (D)
sec = SectionP{jj};
for ii = 1:length (sec)
lines_p = lines_p + 1;
fprintf (fid, '%-64s %7dP%7d\n', sec{ii}, D(jj).id, lines_p);
end
end
% Save Terminate Section
sec_t = sprintf ('%7dS%7dG%7dD%7dP%7d', length (S), length(SectionG), 2*length(D), lines_p);
fprintf (fid, '%-72sT%7d\n', sec_t, 1);
fclose(fid);
end
function P = make_section_array (nurbs)
dim = numel (nurbs.order);
% in IGES the control points are stored in the format [x, y, z, w]
% instead of [w*x, w*y, w*z, w]
for idim = 1:3
nurbs.coefs(idim,:) = nurbs.coefs(idim,:) ./ nurbs.coefs(4,:);
end
P = {};
switch dim
case 1
% Rational B-Spline Curve Entity
cp = nurbs.coefs;
deg = nurbs.order - 1;
knots = nurbs.knots;
uspan = [0 1];
isplanar = ~any(cp(3,:));
P{1} = '126'; % NURBS curve
P{2} = int2str (size (cp, 2) - 1); % Number of control points
P{3} = int2str (deg); % Degree
P{4} = int2str (isplanar); % Curve on xy plane
P{5} = '0';
P{6} = '0';
P{7} = '0';
index = 8;
for ii = 1:length (knots)
P{index} = sprintf ('%f', knots(ii));
index = index + 1;
end
for ii = 1:size (cp, 2)
P{index} = sprintf ('%f', cp(4,ii));
index = index + 1;
end
for ii = 1:size (cp, 2)
P{index} = sprintf ('%f', cp(1,ii));
index = index + 1;
P{index} = sprintf ('%f', cp(2,ii));
index = index + 1;
P{index} = sprintf ('%f', cp(3,ii));
index = index + 1;
end
P{index} = sprintf ('%f', uspan(1));
index = index +1;
P{index} = sprintf ('%f', uspan(2));
index = index +1;
P{index} = '0.0';
index = index +1;
P{index} = '0.0';
index = index +1;
if isplanar
P{index} = '1.0';
else
P{index} = '0.0';
end
index = index + 1;
P{index} = '0';
index = index + 1;
P{index} = '0';
case 2
% Rational B-Spline Surface Entity
cp = nurbs.coefs;
degU = nurbs.order(1) - 1;
degV = nurbs.order(2) - 1;
knotsU = nurbs.knots{1};
knotsV = nurbs.knots{2};
uspan = [0 1];
vspan = [0 1];
P{1} = '128'; % NURBS surface
P{2} = int2str (size (cp, 2) - 1); % Number of control points in U
P{3} = int2str (size (cp, 3) - 1); % Number of control points in V
P{4} = int2str (degU); % Degree in U
P{5} = int2str (degV); % Degree in V
P{6} = '0';
P{7} = '0';
P{8} = '0';
P{9} = '0';
P{10} = '0';
index = 11;
for ii = 1:length (knotsU)
P{index} = sprintf ('%f', knotsU(ii));
index = index + 1;
end
for ii = 1:length (knotsV)
P{index} = sprintf ('%f', knotsV(ii));
index = index + 1;
end
for jj = 1:size (cp, 3)
for ii = 1:size (cp, 2)
P{index} = sprintf ('%f', cp(4,ii,jj));
index = index + 1;
end
end
for jj = 1:size (cp, 3)
for ii = 1:size (cp, 2)
P{index} = sprintf ('%f',cp(1,ii,jj));
index = index + 1;
P{index} = sprintf ('%f',cp(2,ii,jj));
index = index + 1;
P{index} = sprintf ('%f',cp(3,ii,jj));
index = index + 1;
end
end
P{index} = sprintf('%f',uspan(1));
index = index +1;
P{index} = sprintf('%f',uspan(2));
index = index +1;
P{index} = sprintf('%f',vspan(1));
index = index +1;
P{index} = sprintf('%f',vspan(2));
index = index +1;
P{index} = '0';
index = index + 1;
P{index} = '0';
otherwise
end
end
function hs = HString (str)
% HString : Convert the string STR to the Hollerith format.
hs = sprintf ('%dH%s', length(str), str);
end
function sec = make_section (fields, linewidth)
sec = {};
index = 1;
line = '';
num = length (fields);
for i = 1:num
if (i < num)
newitem = [fields{i} ','];
else
newitem = [fields{i} ';'];
end
len = length (line) + length (newitem);
if ( len > linewidth )
% new line
sec{index} = line;
index = index + 1;
line = '';
end
line = [line newitem];
end
sec{index} = line;
end
|