/usr/share/octave/packages/nurbs-1.3.13/nrbbasisfun.m is in octave-nurbs 1.3.13-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 | function [B, id] = nrbbasisfun (points, nrb)
% NRBBASISFUN: Basis functions for NURBS
%
% Calling Sequence:
%
% B = nrbbasisfun (u, crv)
% B = nrbbasisfun ({u, v}, srf)
% [B, N] = nrbbasisfun ({u, v}, srf)
% [B, N] = nrbbasisfun (pts, srf)
% [B, N] = nrbbasisfun ({u, v, w}, vol)
% [B, N] = nrbbasisfun (pts, vol)
%
% INPUT:
%
% u - parametric coordinates along u direction
% v - parametric coordinates along v direction
% w - parametric coordinates along w direction
% pts - array of scattered points in parametric domain, array size: (ndim,num_points)
% crv - NURBS curve
% srf - NURBS surface
% vol - NURBS volume
%
% If the parametric coordinates are given in a cell-array, the values
% are computed in a tensor product set of points
%
% OUTPUT:
%
% B - Value of the basis functions at the points
% size(B)=[npts, prod(nrb.order)]
%
% N - Indices of the basis functions that are nonvanishing at each
% point. size(N) == size(B)
%
%
% Copyright (C) 2009 Carlo de Falco
% Copyright (C) 2015 Jacopo Corno
% Copyright (C) 2016 Rafael Vazquez
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
if ( (nargin<2) ...
|| (nargout>2) ...
|| (~isstruct(nrb)) ...
|| (iscell(points) && ~iscell(nrb.knots)) ...
|| (~iscell(points) && iscell(nrb.knots) && (size(points,1)~=numel(nrb.number))) ...
)
error('Incorrect input arguments in nrbbasisfun');
end
if (~iscell (nrb.knots)) %% NURBS curve
knt = {nrb.knots};
else %% NURBS surface or volume
knt = nrb.knots;
end
ndim = numel (nrb.number);
w = reshape (nrb.coefs(4,:), [nrb.number 1]);
for idim = 1:ndim
if (iscell (points))
pts_dim = points{idim};
else
pts_dim = points(idim,:);
end
sp{idim} = findspan (nrb.number(idim)-1, nrb.order(idim)-1, pts_dim, knt{idim});
N{idim} = basisfun(sp{idim}, pts_dim, nrb.order(idim)-1, knt{idim});
num{idim} = numbasisfun (sp{idim}, pts_dim, nrb.order(idim)-1, knt{idim}) + 1;
end
if (ndim == 1)
id = num{1};
B = reshape (w(num{1}), size(N{1})) .* N{1};
B = bsxfun (@(x,y) x./y, B, sum(B,2));
% B = B ./ sum(B,2);
else
if (iscell (points))
npts_dim = cellfun (@numel, points);
cumnpts = cumprod([1 npts_dim]);
npts = prod (npts_dim);
val_aux = 1;
numaux = 1;
cumorder = cumprod ([1 nrb.order]);
cumnumber = cumprod ([1 nrb.number]);
for idim = 1:ndim
val_aux = kron (N{idim}, val_aux);
num_dim = reshape (num{idim}, 1, npts_dim(idim), 1, nrb.order(idim));
num_dim = repmat (num_dim, cumnpts(idim), 1, cumorder(idim), 1);
num_prev = reshape (numaux, cumnpts(idim), 1, cumorder(idim), 1);
num_prev = repmat (num_prev, 1, npts_dim(idim), 1, nrb.order(idim));
numaux = sub2ind ([cumnumber(idim) nrb.number(idim)], num_prev, num_dim);
numaux = reshape (numaux, cumnpts(idim+1), cumorder(idim+1));
end
B = reshape (val_aux, npts, prod (nrb.order));
id = reshape (numaux, npts, prod (nrb.order));
W = w(id);
B = bsxfun (@(x,y) x./y, W.*B, sum (W .* B, 2));
else
npts = numel (points(1,:));
B = zeros (npts, prod(nrb.order));
id = zeros (npts, prod(nrb.order));
local_num = cell (ndim, 1);
for ipt = 1:npts
val_aux = 1;
for idim = 1:ndim
val_aux = reshape (val_aux.' * N{idim}(ipt,:), 1, []);
% val_aux2 = kron (N{idim}(ipt,:), val_aux);
local_num{idim} = num{idim}(ipt,:);
end
[local_num{:}] = ndgrid (local_num{:});
id(ipt,:) = reshape (sub2ind (nrb.number, local_num{:}), 1, size(id, 2));
W = reshape (w(id(ipt,:)), size(val_aux));
val_aux = W .* val_aux;
B(ipt,:) = val_aux / sum (val_aux);
end
end
end
end
%!demo
%! U = [0 0 0 0 1 1 1 1];
%! x = [0 1/3 2/3 1] ;
%! y = [0 0 0 0];
%! w = [1 1 1 1];
%! nrb = nrbmak ([x;y;y;w], U);
%! u = linspace(0, 1, 30);
%! B = nrbbasisfun (u, nrb);
%! xplot = sum(bsxfun(@(x,y) x.*y, B, x),2);
%! plot(xplot, B)
%! title('Cubic Bernstein polynomials')
%! hold off
%!test
%! U = [0 0 0 0 1 1 1 1];
%! x = [0 1/3 2/3 1] ;
%! y = [0 0 0 0];
%! w = rand(1,4);
%! nrb = nrbmak ([x;y;y;w], U);
%! u = linspace(0, 1, 30);
%! B = nrbbasisfun (u, nrb);
%! xplot = sum(bsxfun(@(x,y) x.*y, B, x),2);
%!
%! yy = y; yy(1) = 1;
%! nrb2 = nrbmak ([x.*w;yy;y;w], U);
%! aux = nrbeval(nrb2,u);
%! %figure, plot(xplot, B(:,1), aux(1,:).', w(1)*aux(2,:).')
%! assert(B(:,1), w(1)*aux(2,:).', 1e-6)
%!
%! yy = y; yy(2) = 1;
%! nrb2 = nrbmak ([x.*w;yy;y;w], U);
%! aux = nrbeval(nrb2, u);
%! %figure, plot(xplot, B(:,2), aux(1,:).', w(2)*aux(2,:).')
%! assert(B(:,2), w(2)*aux(2,:).', 1e-6)
%!
%! yy = y; yy(3) = 1;
%! nrb2 = nrbmak ([x.*w;yy;y;w], U);
%! aux = nrbeval(nrb2,u);
%! %figure, plot(xplot, B(:,3), aux(1,:).', w(3)*aux(2,:).')
%! assert(B(:,3), w(3)*aux(2,:).', 1e-6)
%!
%! yy = y; yy(4) = 1;
%! nrb2 = nrbmak ([x.*w;yy;y;w], U);
%! aux = nrbeval(nrb2,u);
%! %figure, plot(xplot, B(:,4), aux(1,:).', w(4)*aux(2,:).')
%! assert(B(:,4), w(4)*aux(2,:).', 1e-6)
%!test
%! p = 2; q = 3; m = 4; n = 5;
%! Lx = 1; Ly = 1;
%! nrb = nrb4surf ([0 0], [1 0], [0 1], [1 1]);
%! nrb = nrbdegelev (nrb, [p-1, q-1]);
%! aux1 = linspace(0,1,m); aux2 = linspace(0,1,n);
%! nrb = nrbkntins (nrb, {aux1(2:end-1), aux2(2:end-1)});
%! u = rand (1, 30); v = rand (1, 10);
%! u = u - min (u); u = u / max (u);
%! v = v - min (v); v = v / max (v);
%! [B, N] = nrbbasisfun ({u, v}, nrb);
%! assert (sum(B, 2), ones(300, 1), 1e-6)
%! assert (all (all (B<=1)), true)
%! assert (all (all (B>=0)), true)
%! assert (all (all (N>0)), true)
%! assert (all (all (N <= prod (nrb.number))), true)
%! assert (max (max (N)),prod (nrb.number))
%! assert (min (min (N)),1)
%!test
%! p1 = 2; p2 = 3; p3 = 2;
%! n1 = 4; n2 = 5; n3 = 4;
%! Lx = 1; Ly = 1; Lz = 1;
%! crv = nrbline([1 0], [2 0]);
%! nrb = nrbtransp (nrbrevolve (crv, [], [0 0 1], pi/2));
%! nrb = nrbextrude (nrb, [0 0 1]);
%! nrb = nrbdegelev (nrb, [p1-1, p2-2, p3-1]);
%! aux1 = linspace(0,1,n1); aux2 = linspace(0,1,n2); aux3 = linspace(0,1,n3);
%! nrb = nrbkntins (nrb, {aux1(2:end-1), aux2(2:end-1), aux3(2:end-1)});
%!
%! u = rand (1, 12); v = rand (1, 10); w = rand (1, 15);
%! u = u - min (u); u = u / max (u);
%! v = v - min (v); v = v / max (v);
%! w = w - min (w); w = w / max (w);
%! [B, N] = nrbbasisfun ({u, v, w}, nrb);
%! assert (all(sum(B, 2) - ones(numel(u)*numel(v)*numel(w),1) < 1e-6))
%! assert (all (all (B <= 1)) == true)
%! assert (all (all (B >= 0)) == true)
%! assert (all (all (N > 0)) == true)
%! assert (all (all (N <= prod (nrb.number))) == true)
%! assert (max (max (N)) == prod (nrb.number))
%! assert (min (min (N))== 1)
|