This file is indexed.

/usr/share/octave/packages/nurbs-1.3.13/nrbinverse.m is in octave-nurbs 1.3.13-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
function u = nrbinverse (nrb, x, varargin)
%
% NRBINVERSE: compute parametric point starting from physical point by
% inverting the NURBS map with a Newton scheme
%
% Calling Sequence:
%
%   u = nrbinverse (nrb, x)
%   u = nrbinverse (nrb, x, options)
%
%    INPUT:
%
%      nrb     - NURBS object
%      x       - physical point
%      options - options in the FIELD/VALUE format. Possible choices:
%        'u0'      : starting point in the parametric domain for Newton 
%                    (Default = .5 * ones (ndim, 1))
%        'MaxIter' : maximum number of Newton iterations (Default = 10)
%        'Display' : if true the some info are shown (Default = true)
%        'TolX'    : tolerance for the step size in Newton iterations
%                    (Default = 1e-8)
%        'TolFun'  : tolerance for the residual in Newton iterations
%                    (Default = 1e-8)
%
%    OUTPUT:
%
%      u   - the parametric points corresponding to x
%
% Copyright (C) 2016 Jacopo Corno
%
%    This program is free software: you can redistribute it and/or modify
%    it under the terms of the GNU General Public License as published by
%    the Free Software Foundation, either version 3 of the License, or
%    (at your option) any later version.

%    This program is distributed in the hope that it will be useful,
%    but WITHOUT ANY WARRANTY; without even the implied warranty of
%    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
%    GNU General Public License for more details.
%
%    You should have received a copy of the GNU General Public License
%    along with this program.  If not, see <http://www.gnu.org/licenses/>.
%

  ndim = numel (nrb.number);
%  % Default options
%  persistent p;
%  p = inputParser ();
%  p.addParameter ('u0', .5*ones(ndim, 1), @(x) validateattributes (x, {'numeric'}, {'numel', ndim, '>=', 0, '<=', 1}));
%  p.addParameter ('MaxIter', 10, @(x) validateattributes (x, {'numeric'}, {'scalar'}));
%  p.addParameter ('Display', true, @(x) validateattributes (x, {'logical'}, {}));
%  p.addParameter ('TolX', 1e-8, @(x) validateattributes (x, {'numeric'}, {'scalar'}));
%  p.addParameter ('TolFun', 1e-8, @(x) validateattributes (x, {'numeric'}, {'scalar'}));
%  p.parse (varargin{:});
%  options = p.Results;
  
  % Default options
  options = struct ('u0'      , .5*ones (ndim, 1), ...
                    'MaxIter' , 10, ...
                    'Display' , true, ...
                    'TolX',     1e-8, ...
                    'TolFun',   1e-8);

  % Read the acceptable names
  optionNames = fieldnames (options);

  % Count arguments
  nargin = length (varargin);
  if (round (nargin/2) ~= nargin/2)
     error ('NRBINVERSE needs propertyName/propertyValue pairs');
  end
  
  % Check options passed
  for pair = reshape (varargin, 2, [])
    if any (strcmp (pair{1}, optionNames))
      options.(pair{1}) = pair{2};
    else
      error('%s is not a recognized parameter name', pair{1});
    end
  end
  
  % x as column vector
  x = x(:);
  
  % Define functions for Newton iteration
  f = @(U) nrbeval (nrb, num2cell (U)) - x;
  jac = @(U) nrbjacobian (nrb, num2cell (U));
  
  % Newton cycle
  u_old = options.u0(:);

  if (iscell (nrb.knots))
    first_knot = reshape (cellfun (@(x) x(1),nrb.knots), size(u_old));
    last_knot = reshape (cellfun (@(x) x(end),nrb.knots), size(u_old));
  else
    first_knot = nrb.knots(1);
    last_knot = nrb.knots(end);
  end
  convergence = false;
  
  for iter = 1:options.MaxIter

    u_new = u_old - jac (u_old) \ f (u_old);

    % Check if the point is outside the parametric domain
    u_new = max (u_new, first_knot);
    u_new = min (u_new, last_knot);
    
    % Error control
    if (norm (u_new - u_old) < options.TolX && norm (f (u_new)) < options.TolFun)
      if (options.Display)
        fprintf ('Newton scheme converged in %i iteration.\n', iter);
      end
      convergence = true;
      break;
    end
    
    u_old = u_new;
    
  end

  if (~convergence)
    fprintf ('Newton scheme reached the maximum number of iterations (%i) without converging.\n', options.MaxIter);
  end
  u = u_new;

end

function jac = nrbjacobian (nrb, u)

  ders = nrbderiv (nrb);
  [~, jac] = nrbdeval (nrb, ders, u);
  jac = [jac{:}];  

end

%!test
%! nrb = nrb4surf ([0 0], [1 0], [2 3], [5 4]);
%! p = nrbeval (nrb, {.25 .75});
%! u = nrbinverse (nrb, p, 'Display', false);
%! assert (norm (u - [.25; .75]) < 1e-8);
%!
%!test
%! nrb = nrb4surf ([0 0], [1 0], [2 3], [5 4]);
%! nrb = nrbdegelev (nrbextrude (nrb, [0 2 1]), [3 3 3]);
%! p = nrbeval (nrb, {.25 .75 .05});
%! u = nrbinverse (nrb, p, 'Display', false, 'TolX', 1e-12, 'TolFun', 1e-10);
%! assert (norm (u - [.25; .75; .05]) < 1e-8);
%!