This file is indexed.

/usr/share/octave/packages/nurbs-1.3.13/tbasisfun.m is in octave-nurbs 1.3.13-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
function [N, Nder] = tbasisfun (u, p, U)
%
% TBASISFUN: Compute a B- or T-Spline basis function, and its derivatives, from its local knot vector.
%
% usage:
%
% [N, Nder] = tbasisfun (u, p, U)
% [N, Nder] = tbasisfun ([u; v], [p q], {U, V})
% [N, Nder] = tbasisfun ([u; v; w], [p q r], {U, V, W})
% 
% INPUT:
%
%  u or [u; v] : points in parameter space where the basis function is to be
%  evaluated 
%  
%  U or {U, V} : local knot vector
%
% p or [p q] : polynomial degree of the basis function
%
% OUTPUT:
%
%  N    : basis function evaluated at the given parametric points 
%  Nder : basis function gradient evaluated at the given parametric points 
%
%    Copyright (C) 2009 Carlo de Falco
%    Copyright (C) 2012 Rafael Vazquez
%
%    This program is free software: you can redistribute it and/or modify
%    it under the terms of the GNU General Public License as published by
%    the Free Software Foundation, either version 3 of the License, or
%    (at your option) any later version.

%    This program is distributed in the hope that it will be useful,
%    but WITHOUT ANY WARRANTY; without even the implied warranty of
%    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
%    GNU General Public License for more details.
%
%    You should have received a copy of the GNU General Public License
%    along with this program.  If not, see <http://www.gnu.org/licenses/>.
  
  if (~ iscell (U))
    U = sort (U);
    if (numel (U) ~= p+2)
      error ('tbasisfun: knot vector and degree do not correspond')
    end
    
    if (nargout == 1)
      N = onebasisfun__ (u, p, U);
    else
      [N, Nder] = onebasisfunder__ (u, p, U);
    end
    
  elseif (size(U,2) == 2)
    U{1} = sort(U{1}); U{2} = sort(U{2});
    if (numel(U{1}) ~= p(1)+2 || numel(U{2}) ~= p(2)+2)
      error ('tbasisfun: knot vector and degree do not correspond')
    end
    
    if (nargout == 1)
      Nu = onebasisfun__ (u(1,:), p(1), U{1});
      Nv = onebasisfun__ (u(2,:), p(2), U{2});

      N = Nu.*Nv;
    elseif (nargout == 2)
      [Nu, Ndu] = onebasisfunder__ (u(1,:), p(1), U{1});
      [Nv, Ndv] = onebasisfunder__ (u(2,:), p(2), U{2});

      N = Nu.*Nv;
      Nder(1,:) = Ndu.*Nv;
      Nder(2,:) = Nu.*Ndv;
    end
    
  elseif (size(U,2) == 3)
    U{1} = sort(U{1}); U{2} = sort(U{2}); U{3} = sort(U{3});
    if (numel(U{1}) ~= p(1)+2 || numel(U{2}) ~= p(2)+2 || numel(U{3}) ~= p(3)+2)
      error ('tbasisfun: knot vector and degree do not correspond')
    end

    if (nargout == 1)
      Nu = onebasisfun__ (u(1,:), p(1), U{1});
      Nv = onebasisfun__ (u(2,:), p(2), U{2});
      Nw = onebasisfun__ (u(3,:), p(3), U{3});

      N = Nu.*Nv.*Nw;
    else
      [Nu, Ndu] = onebasisfunder__ (u(1,:), p(1), U{1});
      [Nv, Ndv] = onebasisfunder__ (u(2,:), p(2), U{2});
      [Nw, Ndw] = onebasisfunder__ (u(3,:), p(3), U{3});
      
      N = Nu.*Nv.*Nw;
      Nder(1,:) = Ndu.*Nv.*Nw;
      Nder(2,:) = Nu.*Ndv.*Nw;
      Nder(3,:) = Nu.*Nv.*Ndw;
    end
  end

end

%!demo
%! U = {[0 0 1/2 1 1], [0 0 0 1 1]};
%! p = [3, 3];
%! [X, Y] = meshgrid (linspace(0, 1, 30));
%! u = [X(:), Y(:)]';
%! N = tbasisfun (u, p, U);
%! surf (X, Y, reshape (N, size(X)))
%! title('Basis function associated to a local knot vector')
%! hold off

%!test
%! U = [0 1/2 1];
%! p = 1;
%! u = [0.3 0.4 0.6 0.7];
%! [N, Nder] = tbasisfun (u, p, U);
%! assert (N, [0.6 0.8 0.8 0.6], 1e-12);
%! assert (Nder, [2 2 -2 -2], 1e-12);

%!test
%! U = {[0 1/2 1] [0 1/2 1]};
%! p = [1 1];
%! u = [0.3 0.4 0.6 0.7; 0.3 0.4 0.6 0.7];
%! [N, Nder] = tbasisfun (u, p, U);
%! assert (N, [0.36 0.64 0.64 0.36], 1e-12);
%! assert (Nder, [1.2 1.6 -1.6 -1.2; 1.2 1.6 -1.6 -1.2], 1e-12);

%!test
%! U = {[0 1/2 1] [0 1/2 1] [0 1/2 1]};
%! p = [1 1 1];
%! u = [0.4 0.4 0.6 0.6; 0.4 0.4 0.6 0.6; 0.4 0.6 0.4 0.6];
%! [N, Nder] = tbasisfun (u, p, U);
%! assert (N, [0.512 0.512 0.512 0.512], 1e-12);
%! assert (Nder, [1.28 1.28 -1.28 -1.28; 1.28 1.28 -1.28 -1.28; 1.28 -1.28 1.28 -1.28], 1e-12);