/usr/share/doc/octave-optim/html/leasqr.html is in octave-optim 1.5.2-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 | <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Additional documentation for the optim package for Octave.
Copyright (C) Olaf Till <i7tiol@t-online.de>
You can redistribute this documentation and/or modify it under the terms
of the GNU General Public License as published by the Free Software
Foundation; either version 3 of the License, or (at your option) any
later version.
This documentation is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.
You should have received a copy of the GNU General Public License along
with this documentation; if not, see <http://www.gnu.org/licenses/>. -->
<!-- Created by GNU Texinfo 5.2, http://www.gnu.org/software/texinfo/ -->
<head>
<title>optim_doc: leasqr</title>
<meta name="description" content="optim_doc: leasqr">
<meta name="keywords" content="optim_doc: leasqr">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-index.html#Function-index" rel="index" title="Function index">
<link href="Residual-optimization.html#Residual-optimization" rel="up" title="Residual optimization">
<link href="expfit.html#expfit" rel="next" title="expfit">
<link href="lsqlin.html#lsqlin" rel="prev" title="lsqlin">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="leasqr"></a>
<div class="header">
<p>
Next: <a href="expfit.html#expfit" accesskey="n" rel="next">expfit</a>, Previous: <a href="lsqlin.html#lsqlin" accesskey="p" rel="prev">lsqlin</a>, Up: <a href="Residual-optimization.html#Residual-optimization" accesskey="u" rel="up">Residual optimization</a> [<a href="Function-index.html#Function-index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="An-older-function-for-curve-fitting"></a>
<h3 class="section">2.8 An older function for curve fitting</h3>
<a name="index-leasqr-8"></a>
<p>This was a popular function for curve fitting and has been enhanced to
honour constraints. <code>nonlin_curvefit</code> (
see
<a href="nonlin_005fcurvefit.html#nonlin_005fcurvefit">nonlin_curvefit</a>) does
now the same job if used with the default backend, and should be
prefered due to its more powerful interface. The statistics returned by
<code>leasqr</code> can also (and partially better) be computed with
<code>curvefit_stat</code> (
see
<a href="curvefit_005fstat.html#curvefit_005fstat">curvefit_stat</a>). There are currently two
things which still only <code>leasqr</code> does:
</p>
<ul>
<li> internally providing a function for plotting fits during
optimization,
</li><li> returning a pre-computed matrix for determining confidence
regions.
</li></ul>
<a name="XREFleasqr"></a><dl>
<dt><a name="index-leasqr"></a>Function File: <em></em> <strong>leasqr</strong> <em>(<var>x</var>, <var>y</var>, <var>pin</var>, <var>F</var>)</em></dt>
<dt><a name="index-leasqr-1"></a>Function File: <em></em> <strong>leasqr</strong> <em>(<var>x</var>, <var>y</var>, <var>pin</var>, <var>F</var>, <var>stol</var>)</em></dt>
<dt><a name="index-leasqr-2"></a>Function File: <em></em> <strong>leasqr</strong> <em>(<var>x</var>, <var>y</var>, <var>pin</var>, <var>F</var>, <var>stol</var>, <var>niter</var>)</em></dt>
<dt><a name="index-leasqr-3"></a>Function File: <em></em> <strong>leasqr</strong> <em>(<var>x</var>, <var>y</var>, <var>pin</var>, <var>F</var>, <var>stol</var>, <var>niter</var>, <var>wt</var>)</em></dt>
<dt><a name="index-leasqr-4"></a>Function File: <em></em> <strong>leasqr</strong> <em>(<var>x</var>, <var>y</var>, <var>pin</var>, <var>F</var>, <var>stol</var>, <var>niter</var>, <var>wt</var>, <var>dp</var>)</em></dt>
<dt><a name="index-leasqr-5"></a>Function File: <em></em> <strong>leasqr</strong> <em>(<var>x</var>, <var>y</var>, <var>pin</var>, <var>F</var>, <var>stol</var>, <var>niter</var>, <var>wt</var>, <var>dp</var>, <var>dFdp</var>)</em></dt>
<dt><a name="index-leasqr-6"></a>Function File: <em></em> <strong>leasqr</strong> <em>(<var>x</var>, <var>y</var>, <var>pin</var>, <var>F</var>, <var>stol</var>, <var>niter</var>, <var>wt</var>, <var>dp</var>, <var>dFdp</var>, <var>options</var>)</em></dt>
<dt><a name="index-leasqr-7"></a>Function File: <em>[<var>f</var>, <var>p</var>, <var>cvg</var>, <var>iter</var>, <var>corp</var>, <var>covp</var>, <var>covr</var>, <var>stdresid</var>, <var>Z</var>, <var>r2</var>] =</em> <strong>leasqr</strong> <em>(…)</em></dt>
<dd><p>Levenberg-Marquardt nonlinear regression.
</p>
<p>Input arguments:
</p>
<dl compact="compact">
<dt><var>x</var></dt>
<dd><p>Vector or matrix of independent variables.
</p>
</dd>
<dt><var>y</var></dt>
<dd><p>Vector or matrix of observed values.
</p>
</dd>
<dt><var>pin</var></dt>
<dd><p>Vector of initial parameters to be adjusted by leasqr.
</p>
</dd>
<dt><var>F</var></dt>
<dd><p>Name of function or function handle. The function must be of the form
<code>y = f(x, p)</code>, with y, x, p of the form <var>y</var>, <var>x</var>, <var>pin</var>.
</p>
</dd>
<dt><var>stol</var></dt>
<dd><p>Scalar tolerance on fractional improvement in scalar sum of squares, i.e.,
<code>sum ((<var>wt</var> .* (<var>y</var>-<var>f</var>))^2)</code>. Set to 0.0001 if
empty or not given;
</p>
</dd>
<dt><var>niter</var></dt>
<dd><p>Maximum number of iterations. Set to 20 if empty or not given.
</p>
</dd>
<dt><var>wt</var></dt>
<dd><p>Statistical weights (same dimensions as <var>y</var>). These should be
set to be proportional to <code>sqrt (<var>y</var>) ^-1</code>, i.e., the
covariance matrix of the data is assumed to be proportional to
diagonal with diagonal equal to <code>(<var>wt</var>.^2)^-1</code>. The constant of
proportionality will be estimated. Set to <code>ones (size
(<var>y</var>))</code> if empty or not given.
</p>
</dd>
<dt><var>dp</var></dt>
<dd><p>Fractional increment of <var>p</var> for numerical partial derivatives. Set
to <code>0.001 * ones (size (<var>pin</var>))</code> if empty or not given.
</p>
<ul>
<li> dp(j) > 0 means central differences on j-th parameter p(j).
</li><li> dp(j) < 0 means one-sided differences on j-th parameter p(j).
</li><li> dp(j) = 0 holds p(j) fixed, i.e., leasqr won’t change initial guess: pin(j)
</li></ul>
</dd>
<dt><var>dFdp</var></dt>
<dd><p>Name of partial derivative function in quotes or function handle. If
not given or empty, set to <code>dfdp</code>, a slow but general partial
derivatives function. The function must be of the form <code>prt =
dfdp (x, f, p, dp, F [,bounds])</code>. For backwards compatibility, the
function will only be called with an extra ’bounds’ argument if the
’bounds’ option is explicitly specified to leasqr (see dfdp.m).
</p>
</dd>
<dt><var>options</var></dt>
<dd><p>Structure with multiple options. The following fields are recognized:
</p>
<dl compact="compact">
<dt><code>fract_prec</code></dt>
<dd><p>Column vector (same length as <var>pin</var>)
of desired fractional precisions in parameter estimates.
Iterations are terminated if change in parameter vector (chg)
relative to current parameter estimate is less than their
corresponding elements in ’fract_prec’, i.e.,
<code>all (abs (chg) < abs (options.fract_prec .* current_parm_est))</code> on two
consecutive iterations. Defaults to <code>zeros (size (<var>pin</var>))</code>.
</p>
</dd>
<dt><code>max_fract_change</code></dt>
<dd><p>Column vector (same length as <var>pin</var>) of maximum fractional step
changes in parameter vector.
Fractional change in elements of parameter vector is constrained to
be at most ’max_fract_change’ between sucessive iterations, i.e.,
<code>abs (chg(i)) = abs (min([chg(i), options.max_fract_change(i) * current param estimate]))</code>.
Defaults to <code>Inf * ones (size (<var>pin</var>))</code>.
</p>
</dd>
<dt><code>inequc</code></dt>
<dd><p>Cell-array containing up to four entries,
two entries for linear inequality constraints and/or one or two
entries for general inequality constraints. Initial parameters
must satisfy these constraints. Either linear or general
constraints may be the first entries, but the two entries for
linear constraints must be adjacent and, if two entries are given
for general constraints, they also must be adjacent. The two
entries for linear constraints are a matrix (say m) and a vector
(say v), specifying linear inequality constraints of the form
‘m.’ * parameters + v >= 0’. If the constraints are just bounds,
it is suggested to specify them in ’options.bounds’ instead,
since then some sanity tests are performed, and since the
function ’dfdp.m’ is guarantied not to violate constraints during
determination of the numeric gradient only for those constraints
specified as ’bounds’ (possibly with violations due to a certain
inaccuracy, however, except if no constraints except bounds are
specified). The first entry for general constraints must be a
differentiable vector valued function (say h), specifying general
inequality constraints of the form ‘h (p[, idx]) >= 0’; p is the
column vector of optimized paraters and the optional argument idx
is a logical index. h has to return the values of all constraints
if idx is not given, and has to return only the indexed
constraints if idx is given (so computation of the other
constraints can be spared). If a second entry for general
constraints is given, it must be a function (say dh) which
returnes a matrix whos rows contain the gradients of the
constraint function h with respect to the optimized parameters.
It has the form jac_h = dh (vh, p, dp, h, idx[, bounds]); p is
the column vector of optimized parameters, and idx is a logical
index — only the rows indexed by idx must be returned (so
computation of the others can be spared). The other arguments of
dh are for the case that dh computes numerical gradients: vh is
the column vector of the current values of the constraint
function h, with idx already applied. h is a function h (p) to
compute the values of the constraints for parameters p, it will
return only the values indexed by idx. dp is a suggestion for
relative step width, having the same value as the argument ’dp’
of leasqr above. If bounds were specified to leasqr, they are
provided in the argument bounds of dh, to enable their
consideration in determination of numerical gradients. If dh is
not specified to leasqr, numerical gradients are computed in the
same way as with ’dfdp.m’ (see above). If some constraints are
linear, they should be specified as linear constraints (or
bounds, if applicable) for reasons of performance, even if
general constraints are also specified.
</p>
</dd>
<dt><code>bounds</code></dt>
<dd><p>Two-column-matrix, one row for each
parameter in <var>pin</var>. Each row contains a minimal and maximal value
for each parameter. Default: [-Inf, Inf] in each row. If this
field is used with an existing user-side function for ’dFdp’
(see above) the functions interface might have to be changed.
</p>
</dd>
<dt><code>equc</code></dt>
<dd><p>Equality constraints, specified the same
way as inequality constraints (see field ’options.inequc’).
Initial parameters must satisfy these constraints.
Note that there is possibly a certain inaccuracy in honoring
constraints, except if only bounds are specified.
<em>Warning</em>: If constraints (or bounds) are set, returned guesses
of <var>corp</var>, <var>covp</var>, and <var>Z</var> are generally invalid, even if
no constraints
are active for the final parameters. If equality constraints are
specified, <var>corp</var>, <var>covp</var>, and <var>Z</var> are not guessed at all.
</p>
</dd>
<dt><code>cpiv</code></dt>
<dd><p>Function for complementary pivot algorithm
for inequality constraints. Defaults to cpiv_bard. No different
function is supplied.
</p>
</dd>
</dl>
<p>For backwards compatibility, <var>options</var> can also be a matrix whose
first and second column contains the values of <code>fract_prec</code> and
<code>max_fract_change</code>, respectively.
</p>
</dd>
</dl>
<p>Output:
</p>
<dl compact="compact">
<dt><var>f</var></dt>
<dd><p>Column vector of values computed: f = F(x,p).
</p>
</dd>
<dt><var>p</var></dt>
<dd><p>Column vector trial or final parameters, i.e, the solution.
</p>
</dd>
<dt><var>cvg</var></dt>
<dd><p>Scalar: = 1 if convergence, = 0 otherwise.
</p>
</dd>
<dt><var>iter</var></dt>
<dd><p>Scalar number of iterations used.
</p>
</dd>
<dt><var>corp</var></dt>
<dd><p>Correlation matrix for parameters.
</p>
</dd>
<dt><var>covp</var></dt>
<dd><p>Covariance matrix of the parameters.
</p>
</dd>
<dt><var>covr</var></dt>
<dd><p>Diag(covariance matrix of the residuals).
</p>
</dd>
<dt><var>stdresid</var></dt>
<dd><p>Standardized residuals.
</p>
</dd>
<dt><var>Z</var></dt>
<dd><p>Matrix that defines confidence region (see comments in the source).
</p>
</dd>
<dt><var>r2</var></dt>
<dd><p>Coefficient of multiple determination, intercept form.
</p>
</dd>
</dl>
<p>Not suitable for non-real residuals.
</p>
<p>References:
Bard, Nonlinear Parameter Estimation, Academic Press, 1974.
Draper and Smith, Applied Regression Analysis, John Wiley and Sons, 1981.
</p>
</dd></dl>
<hr>
<div class="header">
<p>
Next: <a href="expfit.html#expfit" accesskey="n" rel="next">expfit</a>, Previous: <a href="lsqlin.html#lsqlin" accesskey="p" rel="prev">lsqlin</a>, Up: <a href="Residual-optimization.html#Residual-optimization" accesskey="u" rel="up">Residual optimization</a> [<a href="Function-index.html#Function-index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|