/usr/share/octave/packages/optim-1.5.2/jacobs.m is in octave-optim 1.5.2-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 | ## Copyright (C) 2011 Fotios Kasolis <fotios.kasolis@gmail.com>
## Copyright (C) 2013-2016 Olaf Till <i7tiol@t-online.de>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {Df =} jacobs (@var{x}, @var{f})
## @deftypefnx {Function File} {Df =} jacobs (@var{x}, @var{f}, @var{hook})
## Calculate the jacobian of a function using the complex step method.
##
## Let @var{f} be a user-supplied function. Given a point @var{x} at
## which we seek for the Jacobian, the function @command{jacobs} returns
## the Jacobian matrix @code{d(f(1), @dots{}, df(end))/d(x(1), @dots{},
## x(n))}. The function uses the complex step method and thus can be
## applied to real analytic functions.
##
## The optional argument @var{hook} is a structure with additional options. @var{hook}
## can have the following fields:
## @itemize @bullet
## @item
## @code{h} - can be used to define the magnitude of the complex step and defaults
## to 1e-20; steps larger than 1e-3 are not allowed.
## @item
## @code{fixed} - is a logical vector internally usable by some optimization
## functions; it indicates for which elements of @var{x} no gradient should be
## computed, but zero should be returned.
## @end itemize
##
## For example:
##
## @example
## @group
## f = @@(x) [x(1)^2 + x(2); x(2)*exp(x(1))];
## Df = jacobs ([1, 2], f)
## @end group
## @end example
## @end deftypefn
function Df = jacobs (x, f, hook)
if ( (nargin < 2) || (nargin > 3) )
print_usage ();
endif
if (ischar (f))
f = str2func (f, "global");
endif
n = numel (x);
default_h = 1e-20;
max_h = 1e-3; # must be positive
if (nargin > 2)
if (isfield (hook, "h"))
if (! (isscalar (hook.h)))
error ("complex step magnitude must be a scalar");
endif
if (abs (hook.h) > max_h)
warning ("complex step magnitude larger than allowed, set to %e", ...
max_h)
h = max_h;
else
h = hook.h;
endif
else
h = default_h;
endif
if (isfield (hook, "fixed"))
if (numel (hook.fixed) != n)
error ("index of fixed parameters has wrong dimensions");
endif
fixed = hook.fixed(:);
else
fixed = false (n, 1);
endif
else
h = default_h;
fixed = false (n, 1);
endif
if (all (fixed))
error ("all elements of 'x' are fixed");
endif
x = repmat (x(:), 1, n) + h * 1i * eye (n);
idx = find (! fixed);
if (nargin > 2)
if (isfield (hook, 'parallel_local'))
parallel_local = hook.parallel_local;
else
parallel_local = false;
end
if (isfield (hook, "parallel_net"))
parallel_net = hook.parallel_net;
else
parallel_net = [];
endif
if (parallel_local || ! isempty (parallel_net))
parallel = true;
## user function
func = @ (id) {imag(f(x(:, id))(:)) / h, false, []}{:};
## error handler
errh = @ (s, id) {[], true, s}{:};
if (parallel_local && ! isempty (parallel_net))
error ("If option 'parallel_net' is not empty, option 'parallel_local' must not be true.");
endif
if (parallel_local)
if (parallel_local > 1)
npr = parallel_local;
else
npr = nproc ("current");
endif
parfun = @ () pararrayfun (npr, func, idx,
"UniformOutput", false,
"VerboseLevel", 0,
"ErrorHandler", errh);
else # ! isempty (parallel_net)
parfun = @ () netarrayfun (parallel_net, func, idx,
"UniformOutput", false,
"ErrorHandler", errh);
endif
else
parallel = false;
endif
else
parallel = false;
endif
if (parallel)
[t_Df, err, info] = parfun ();
## check for errors
if (any ((err = [err{:}])))
id = find (err, 1);
error ("Some subprocesses, calling model function for complex step derivatives, returned and error. Message of first of these (with id %i): %s%s",
id, info{id}.message, print_stack (info{id}));
endif
## process output
t_Df = horzcat (t_Df{:});
Df = zeros (rows (t_Df), n);
Df(:, idx) = t_Df;
else # not parallel
## after first evaluation, dimensionness of 'f' is known
t_Df = imag (f (x(:, idx(1)))(:));
dim = numel (t_Df);
Df = zeros (dim, n);
Df(:, idx(1)) = t_Df;
for count = (idx.')(2:end)
Df(:, count) = imag (f (x(:, count))(:));
endfor
Df /= h;
endif
endfunction
function ret = print_stack (info)
ret = "";
if (isfield (info, "stack"))
for id = 1 : numel (info.stack)
ret = cstrcat (ret, sprintf ("\n %s at line %i comumn %i",
info.stack(id).name,
info.stack(id).line,
info.stack(id).column));
endfor
endif
endfunction
%!assert (jacobs (1, @(x) x), 1)
%!assert (jacobs (6, @(x) x^2), 12)
%!assert (jacobs ([1; 1], @(x) [x(1)^2; x(1)*x(2)]), [2, 0; 1, 1])
%!assert (jacobs ([1; 2], @(x) [x(1)^2 + x(2); x(2)*exp(x(1))]), [2, 1; 2*exp(1), exp(1)])
%% Test input validation
%!error jacobs ()
%!error jacobs (1)
%!error jacobs (1, 2, 3, 4)
%!error jacobs (@sin, 1, [1, 1])
%!error jacobs (@sin, 1, ones(2, 2))
%!demo
%! # Relative error against several h-values
%! k = 3:20; h = 10 .^ (-k); x = 0.3*pi;
%! err = zeros (1, numel (k));
%! for count = 1 : numel (k)
%! err(count) = abs (jacobs (x, @sin, struct ("h", h(count))) - cos (x)) / abs (cos (x)) + eps;
%! endfor
%! loglog (h, err); grid minor;
%! xlabel ("h"); ylabel ("|Df(x) - cos(x)| / |cos(x)|")
%! title ("f(x)=sin(x), f'(x)=cos(x) at x = 0.3pi")
|