This file is indexed.

/usr/share/octave/packages/optim-1.5.2/polyfitinf.m is in octave-optim 1.5.2-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
## Copyright (c) 1998-2011 Andrew V. Knyazev <andrew.knyazev@ucdenver.edu>
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without",
## modification, are permitted provided that the following conditions are met:
##
##     1 Redistributions of source code must retain the above copyright notice,
##       this list of conditions and the following disclaimer.
##     2 Redistributions in binary form must reproduce the above copyright
##       notice, this list of conditions and the following disclaimer in the
##       documentation and/or other materials provided with the distribution.
##     3 Neither the name of the author nor the names of its contributors may be
##       used to endorse or promote products derived from this software without
##       specific prior written permission.
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

% function [A,REF,HMAX,H,R,EQUAL] = polyfitinf(M,N,K,X,Y,EPSH,MAXIT,REF0)
%
%   Best polynomial approximation in discrete uniform norm
%
%   INPUT VARIABLES:
%
%   M       : degree of the fitting polynomial
%   N       : number of data points
%   X(N)    : x-coordinates of data points
%   Y(N)    : y-coordinates of data points
%   K       : character of the polynomial:
%                   K = 0 : mixed parity polynomial
%                   K = 1 : odd polynomial  ( X(1) must be >  0 )
%                   K = 2 : even polynomial ( X(1) must be >= 0 )
%   EPSH    : tolerance for leveling. A useful value for 24-bit
%             mantissa is EPSH = 2.0E-7
%   MAXIT   : upper limit for number of exchange steps
%   REF0(M2): initial alternating set ( N-vector ). This is an
%             OPTIONAL argument. The length M2 is given by:
%                   M2 = M + 2                      , if K = 0
%                   M2 = integer part of (M+3)/2    , if K = 1
%                   M2 = 2 + M/2 (M must be even)   , if K = 2
%
%   OUTPUT VARIABLES:
%
%   A       : polynomial coefficients of the best approximation
%             in order of increasing powers:
%                   p*(x) = A(1) + A(2)*x + A(3)*x^2 + ...
%   REF     : selected alternating set of points
%   HMAX    : maximum deviation ( uniform norm of p* - f )
%   H       : pointwise approximation errors
%	R		: total number of iterations
%   EQUAL   : success of failure of algorithm
%                   EQUAL=1 :  succesful
%                   EQUAL=0 :  convergence not acheived
%                   EQUAL=-1:  input error
%                   EQUAL=-2:  algorithm failure
%
%   Relies on function EXCH, provided below.
%
%   Example: 
%   M = 5; N = 10000; K = 0; EPSH = 10^-12; MAXIT = 10;
%   X = linspace(-1,1,N);   % uniformly spaced nodes on [-1,1]
%   k=1; Y = abs(X).^k;     % the function Y to approximate
%   [A,REF,HMAX,H,R,EQUAL] = polyfitinf(M,N,K,X,Y,EPSH,MAXIT);
%   p = polyval(A,X); plot(X,Y,X,p) % p is the best approximation
%
%   Note: using an even value of M, e.g., M=2, in the example above, makes
%   the algorithm to fail with EQUAL=-2, because of collocation, which
%   appears because both the appriximating function and the polynomial are
%   even functions. The way aroung it is to approximate only the right half
%   of the function, setting K = 2 : even polynomial. For example: 
%
% N = 10000; K = 2; EPSH = 10^-12; MAXIT = 10;  X = linspace(0,1,N);
% for i = 1:2
%     k = 2*i-1; Y = abs(X).^k;
%     for j = 1:4
%         M = 2^j;
%         [~,~,HMAX] = polyfitinf(M,N,K,X,Y,EPSH,MAXIT);
%         approxerror(i,j) = HMAX;
%     end
% end
% disp('Table 3.1 from Approximation theory and methods, M.J.D.POWELL, p. 27');
% disp(' ');
% disp('            n          K=1          K=3'); 
% disp(' '); format short g;
% disp([(2.^(1:4))' approxerror']);
%
%   ALGORITHM:
%
%   Computation of the polynomial that best approximates the data (X,Y)
%   in the discrete uniform norm, i.e. the polynomial with the  minimum
%   value of max{ | p(x_i) - y_i | , x_i in X } . That polynomial, also
%   known as minimax polynomial, is obtained by the exchange algorithm,
%   a finite iterative process requiring, at most,
%      n
%    (   ) iterations ( usually p = M + 2. See also function EXCH ).
%      p
%   since this number can be very large , the routine  may not converge
%   within MAXIT iterations . The  other possibility of  failure occurs
%   when there is insufficient floating point precision  for  the input
%   data chosen.
%
%   CREDITS: This routine was developed and modified as 
%   computer assignments in Approximation Theory courses by 
%   Prof. Andrew Knyazev, University of Colorado Denver, USA.
%
%   Team Fall 98 (Revision 1.0):
%           Chanchai Aniwathananon
%           Crhistopher Mehl
%           David A. Duran
%           Saulo P. Oliveira
%
%   Team Spring 11 (Revision 1.1): Manuchehr Aminian
%
%   The algorithm and the comments are based on a FORTRAN code written
%   by Joseph C. Simpson. The code is available on Netlib repository:
%   http://www.netlib.org/toms/501
%   See also: Communications of the ACM, V14, pp.355-356(1971)
%
%   NOTES:
%
%   1) A may contain the collocation polynomial
%   2) If MAXIT is exceeded, REF contains a new reference set
%   3) M, EPSH and REF can be altered during the execution
%   4) To keep consistency to the original code , EPSH can be
%   negative. However, the use of REF0 is *NOT* determined by
%   EPSH< 0, but only by its inclusion as an input parameter.
%
%   Some parts of the code can still take advantage of vectorization.  
%
%   Revision 1.0 from 1998 is a direct human translation of 
%   the FORTRAN code http://www.netlib.org/toms/501
%   Revision 1.1 is a clean-up and technical update.  
%   Tested on MATLAB Version 7.11.0.584 (R2010b) and 
%   GNU Octave Version 3.2.4

%   $Revision: 1.1 $  $Date: 2011/08/3 $

%       ************************************ beginning of POLYFITINF
function [A,REF,HMAX,H,R,EQUAL] = polyfitinf(M,N,K,X,Y,EPSH,MAXIT,REF0)

    % Preassign output variables A,REF,HMAX,H,R,EQUAL in case of error return
    A = []; REF = []; HMAX = []; H = []; R = 0; EQUAL = -2;
    %%%% end preassignment

    %       Setting M with respect to K
    MOLD = M;

    switch K
        case 1
            K0 = 0;
            K1 = 1;
            Q1 = 1;
            Q2 = 2;
            M =  (M-Q1)/2;
        case 2
            K0 = 0;
            K1 = 0;
            Q1 = 0;
            Q2 = 2;
            
            % If the user has input odd M, but wants an even polynomial,
            % subtract 1 from M to prevent errors later. The outputs should be
            % mathematically equivalent.
            if mod(M,2) == 1
                M = M-1;
            end
            
            M =  (M-Q1)/2;
        otherwise
            if (K ~= 0)
                warning('polyfitinf:MixedParity','Using mixed parity polynomial...');
            end
            K0 = 1;
            K1 = 0;
            Q1 = 0;
            Q2 = 1;
    end

    P = M + 2;

    %       Check input data consistency

    if ( (length(X) ~= N) || (length(Y) ~= N) )
        error('Input Error: check data lengths');
    end

    if (P > N)
        error('Input Error: insufficient data points');
    end

    if (M < 0)
        error('Input Error: insufficient degree');
    end

    if ( (K == 2) && (X(1) < 0) ) || ( (K == 1) && (X(1) <= 0) )
        error('Input Error: X(1) inconsistent with parity');
    end

    if any(diff(X)<0)
        error('Input Error: Abscissae out of order');
    end

    ITEMP = MOLD + 1;

    A = zeros(1,ITEMP);


    ITEMP = P + 2;
    Z = zeros(1,ITEMP);
    Z(1) = 0;
    Z(ITEMP) = N + 1;

    EPSH = abs(EPSH);

    %       Read initial reference set into Z, if available.

    if (nargin == 8)
        J = 0;
        
        Z(2:(P+1))= REF0(1:P);
        
        %	Check if REF is monotonically increasing
        if ( any(diff(REF0) < 0) || any(REF0 > J) )
            error('Input Error : Bad initial reference set');
        end
        
    else
        
        %          Loads Z with the points closest to the Chebychev abscissas
        
        X1 = X(1);
        XE = X(N);
        
        %          Setting parity-dependent parameters
        
        if (K0 == 1)
            XA = XE + X1;
            XE = XE - X1;
            Q = pi/(M + 1.0);
        else
            XA = 0.;
            XE = XE + XE;
            ITEMP = 2*(M+1) + Q1;
            Q = pi/(ITEMP);
        end
        
        %          Calculate the J-th Chebyshev abcissa and load Z(J+1)
        %          with the appropriate index from the data abcissas
        
        for JJ = 1:P
            J = P + 1 - JJ;
            X1 = XA + XE*( cos(Q*(P-J)) );
            ITEMP = J + 2;
            R = Z(ITEMP);
            HIGH = R - 1;
            FLAG = 1;
            if (HIGH >= 2)
                II = 2;
                while ( (II <= HIGH) && (FLAG == 1) )
                    I = HIGH + 2 - II;
                    ITEMP = I - 1;
                    
                    %			If the Chebyschev abscissa is bracketed by
                    % 		     two input abcissas, get out of the while loop
                    
                    if (X(I)+X(ITEMP) <= X1)
                        FLAG = 0;
                    end
                    II = II + 1;
                end
            end
            
            if (FLAG == 1)
                I = 1;
            end
            ITEMP = J + 1;
            
            if (I < R)
                Z(ITEMP) = I;
            else
                Z(ITEMP) = R - 1;
            end
        end
        
        %          If the lower Chebyshev abcissas are less than X(1),
        %          load the lower elements of Z with the lowest points

        IND = find(Z(2:end) >= (1:(length(Z)-1)));
        
        try TEMP = IND(1);	% If IND is empty, do nothing.
        catch exception % The catch will be that IND is an empty array.
            
            if strcmpi(exception.identifier,'MATLAB:badsubscript')
                % This will be the exception. Do nothing.
            end
        end
        
        if TEMP~=1
            Z(2:TEMP) = (1:(TEMP-1))';
        end
        
        
    end

    %       M1 entry. Initialize variables to prepare for exchange iteration

    ITEMP = M + 1;


    %       Zero the AA array


    AA = zeros(1,ITEMP);


    %       Load H with the ordinates and XX(I) with the abscissas if the
    %       polynomial is mixed . If it is even or odd , load XX with the
    %       squares of the abscissas.

    H(1:N) = Y(1:N);
    if (K0 <=0)
        XX(1:N) = X(1:N).^2;
    else
        XX(1:N) = X(1:N);
    end

    B1 = 0;
    B2 = 0;
    B3 = 0;
    R = -1;
    T = 0.;

    %       Iteration entry. R is the iteration index

    C = zeros(1,P);
    D = zeros(1,P);
    DAA = zeros(1,M+1);

    FLAG = 1;
    while ( (R < MAXIT) && (FLAG == 1) )
        
        R = R + 1;   % LABEL 350
        %S = 1.;
        
        %          Computation of div. differences schemes
        
        if (K1 > 0)
            
            %               If the polynomial is mixed or even:
            %for I = 1:P
            %    S = -S;
            %    ITEMP = I + 1;
            %    J = Z(ITEMP);
            %    Q = X(J);
            %    C(I) = (H(J) + S*T)/Q;
            %    D(I) = S/Q;
            %end

	    I = (1:P);
       	S = (-1).^I;
	    ITEMP = I+1;
	    J = Z(ITEMP);
	    C(I) = (H(J) + S*T)./X(J);
	    D(I) = S./Q;
	    clear I ITEMP S J
        
        else
            
            %               If the polynomial is odd:
            %for I = 1:P
            %    S = -S;
            %    ITEMP = I + 1;
            %    ITEMP = Z(ITEMP);
            %    C(I) = H(ITEMP) + S*T;
            %    D(I) = S;
            %end

	    I = (1:P);
       	S = (-1).^I;
	    ITEMP = I+1;
	    C(I) = H( Z(ITEMP) ) + S.*T;
	    D(I) = S;
        clear I ITEMP S
            
        end
        
        for I = 2:P
            for JJ = I:P
                J = P + I - JJ;
                ITEMP = J + 1;
                ITEMP = Z(ITEMP);
                QD = XX(ITEMP);
                ITEMP = 2 + J - I;
                ITEMP = Z(ITEMP);
                QD = QD - XX(ITEMP);
                ITEMP = J - 1;
                C(J) = (C(J)-C(ITEMP))/QD;
                D(J) = (D(J)-D(ITEMP))/QD;
            end
        end
        
        DT = -C(P)/D(P);
        T = T + DT;
        
        %           Computation of polynomial coefficients
        
        HIGH = M + 1;
        for II = 1:HIGH
            I = HIGH - II;
            ITEMP = I + 1;
            DAA(ITEMP) = C(ITEMP) + DT*D(ITEMP);
            ITEMP = I + 2;
            ITEMP = Z(ITEMP);
            QD = XX(ITEMP);
            LOW = I + 1;
            if (M >= LOW)
                DAA(LOW:M) = DAA(LOW:M) - QD*DAA(((LOW:M)+1));
            end
        end
        
        AA(1:HIGH) = AA(1:HIGH) + DAA(1:HIGH);
        
        %	   Evaluation of the polynomial to get the approximation errors
        
        MAXX = 0.;
        H = zeros(1,N);
        for I = 1:N
            SD = AA(HIGH);
            QD = XX(I);
            if (M > 0)
                for J = M:-1:1
                    SD = SD*QD + AA(J);
                end
            end
            if (K1 > 0)
                %		   If the polynomial is odd, multiply SD by X(I)
                SD = SD*X(I);
            end
            
            QD = Y(I) - SD;
            H(I) = Y(I) - SD;
            
            if  (abs(QD) > MAXX)
                %		   Load MAXX with the largest magnitude
                %		   of the approximation array
                MAXX = abs(QD);
            end
        end
        
        %	   Test for alternating signs
        
        ITEMP = Z(2);
        
        if (H(ITEMP) == 0.)
            
            %               This represents a case where the polynomial
            %               exactly predicts a data point
          
            warning('polyfitinf:Collocation','Collocation has occured.');
            if (B3 > 0)
                B3 = -1;
                FLAG = 0;
            else
                B3 = 1;
                if (EPSH < MAXX)
                    warning('polyfitinf:AnotherTry','1 more attempt with middle points');
                    LOW = (N+1)/2 - (P+1)/2 + 1;
                    HIGH = LOW + P;
                    Z(LOW:HIGH) = ( (LOW:HIGH) -1);
                    
                else
                    disp('Normal Exit.');
                    FLAG = 0;
                end
            end
        else
            
            if (H(ITEMP) > 0.)
                J = -1;
            else
                J =  1;
            end
            
            I = 2;
            FLAG2 = 1;
            while ( (I <= P) && (FLAG2 == 1) )
                ITEMP = I + 1;
                ITEMP = Z(ITEMP);
                if (H(ITEMP) == 0.)
                    J = 0;
                    warning('polyfitinf:Collocation','Collocation has occured.');
                    if (B3 > 0)
                        B3 = -1;
                        FLAG = 0;
                    else
                        B3 = 1;
                        if (EPSH < MAXX)
                            warning('polyfitinf:AnotherTry','1 more attempt with middle points');
                            LOW = (N+1)/2 - (P+1)/2 + 1;
                            HIGH = LOW + P;
                            Z(LOW:HIGH) = ( (LOW:HIGH) -1);
                        else
                            disp('Normal Exit.');
                            FLAG = 0;
                        end
                    end
                    FLAG2 = 0;
                else
                    if (H(ITEMP) < 0)
                        JJ = -1;
                    else
                        JJ = 1;
                    end
                    if (J~=JJ)
                        
                        %			   Error entry: bad accuracy for calculation
                        
                        B1 = 1;
                        FLAG2 = 0;
                        FLAG = 0;
                    else
                        J = -J;
                    end
                end
                
                I = I + 1;
                
            end	% end of while
            
            %                  Search for another reference
            
            if (FLAG2*FLAG == 1)
                
                [H,Z,EQUAL] = exch(N, P, EPSH, H, Z);
                if (EQUAL > 0)
                    FLAG = 0;
                else
                    if (R >= MAXIT)
                        B2 = 1;
                        FLAG = 0;
                    end
                end
                
            end
            
        end	  % end of if over H(ITEMP)
        
    end;      % end of iteration loop

    %       M2 entry; load output variables and return

    HIGH = M + 1;

    %       Load the coefficients into A array

    A(Q1 + Q2*(((1:HIGH)-1)) + 1) = AA(1:HIGH);

    %       Load REF with the final reference points

    REF(1:P) = Z((1:P) + 1);

    HMAX = MAXX;

    if (B3 < 0)
        EQUAL = -2;
        warning('polyfitinf:Collocation','polyfitinf terminates');
    end
    if (B1 > 0)
        EQUAL = -2;
        warning('polyfitinf:NoAlternatingSigns','Alternating signs not observed');
    end
    if (B2 > 0)
        EQUAL = 0;
        warning('polyfitinf:MaxIterationsReached','MAXIT was reached, current ref. set saved in REF.');
    end

    % Reverse the order of A to make it compatible with MATLAB'S polyval() function.
    A = A(end:-1:1);


endfunction
%	****************************************** end of POLYFITINF

function [H,Z,EQUAL] = exch(N, P, EPSH, H, Z)
% function [H,Z,EQUAL] = exch(N, P, EPSH, H, Z)
%
%   EXCH: exchange algorithm
%
%   INPUT VARIABLES:
%   N       : number of data points
%   P	: number of reference points
%   EPSH    : tolerance for leveling.
%   Z	: old reference indices
%
%   OUTPUT VARIABLES:
%   H       : pointwise approximation errors
%   Z	: new reference indices
%   EQUAL   :	EQUAL=1 :  normal exchange
%                   EQUAL=0 :  old and new references are equal
%
%   CREDITS: This routine was developed and modified as 
%   computer assignments in Approximation Theory courses by 
%   Prof. Andrew Knyazev, University of Colorado Denver, USA.
%
%   Team Fall 98 (Revision 1.0):
%           Chanchai Aniwathananon
%           Crhistopher Mehl
%           David A. Duran
%           Saulo P. Oliveira
%
%   Team Spring 11 (Revision 1.1): Manuchehr Aminian
%
%   The algorithm and the comments are based on a FORTRAN code written
%   by Joseph C. Simpson. The code is available on Netlib repository:
%   http://www.netlib.org/toms/501
%   See also: Communications of the ACM, V14, pp.355-356(1971)
%
%   Revision 1.0 from 1998 is a direct human translation of 
%   the FORTRAN code http://www.netlib.org/toms/501
%   Revision 1.1 is a clean-up and technical update.  
%   Tested on MATLAB Version 7.11.0.584 (R2010b) and 
%   GNU Octave Version 3.2.4

%   License: BSD
%   Copyright 1998-2011 Andrew V. Knyazev
%   $Revision: 1.1 $  $Date: 2011/05/17 $

%       ************************************ beginning of exch

    EQUAL = 0;
    L = 0;
    ITEMP =  Z(2);

    %	SIG is arbitrarily chosen equal to the sign of the input
    %	point. This will be adjusted later if necessary.

    if (H(ITEMP) <= 0)
        SIG = 1.;
    else
        SIG = -1.;
    end

    %	The next loop prescans Z to insure it is a proper choice, i.e
    %	resets Z if necessary so that maximum error points are chosen,
    %	given the sign convention mentioned above. In order to work
    %	properly, this section requires Z(1) = 0 and Z(P+2) = N + 1 .

    for I = 1:P
        MAXX = 0.;
        SIG = -SIG;
        ITEMP = I + 2;
        ZE  =  Z(ITEMP) - 1;
        LOW =  Z(I) + 1;
        
        %	   Scan the open point interval containing only the 1th initial
        %	   reference point. In the interval pick the point with largest
        %	   magnitude and correct sign. Most of the sorting occurs in
        %	   this section. SIG contains the sign assumed for H(I).
        
        for J = LOW:ZE
            if (SIG*(H(J)-MAXX) > 0)
                MAXX = H(J);
                INDEX = J;
            end
        end
        ITEMP = I + 1;
        ITEMP =  Z(ITEMP);
        MAXL = abs(MAXX);
        
        %	   If the MAX error is significantly greater than the
        %	   input point, switch to this point.
        
        if (abs( MAXX - H(ITEMP) )/MAXL > EPSH)
            ITEMP = I + 1;
            Z(ITEMP) = INDEX;
            L = 1;
        end
    end
    %
    MAXL = 0.;
    MAXR = 0.;
    ITEMP = P + 1;
    LOW =  Z(ITEMP) + 1;
    %
    if (LOW <= N)
        
        %	   Find the error with largest abs value and proper sign
        %	   from among the points above the last reference point.
        %	   This section is necessary because the set of points
        %	   chosen may begin with the wrong sign alternation.
        
        for J = LOW:N
            if (SIG*(MAXR-H(J)) > 0)
                MAXR = H(J);
                INDR = J;
            end
        end
    end

    %	Find the error with largest abs value and proper sign
    %	from among the points below  the 1st reference  point.
    %	This section is necessary by the same reason as above.

    ITEMP =  Z(2);
    HZ1 = H(ITEMP);
    HIGH = ITEMP -1;
    if (HIGH > 0)
        if (HZ1 < 0)
            SIG = -1.;
        elseif (HZ1 == 0)
            SIG = 0.;
        else
            SIG = 1.;
        end
        
        for J = 1:HIGH
            if (SIG*(MAXL-H(J)) > 0)
                MAXL = H(J);
                INDL = J;
            end
        end
        
    end

    %	MAXL and MAXR contain the magnitude of the significant
    %	errors outside the reference point set. If either is
    %	zero, the reference point set extends to the end point
    %	on that side of the interval.

    MAXL = abs(MAXL);
    MAXR = abs(MAXR);
    HZ1 = abs(HZ1);
    ITEMP = P + 1;
    ITEMP =  Z(ITEMP);
    HZP = abs(H(ITEMP));

    %	L = 0 implies that the previous prescan did not change
    %	any points. If L = 0 and MAXL, MAXR are not significant
    %	if compared with upper and lower reference point errors,
    %	respectively, use the EQUAL exit.

    FLAG1 = 1;
    if (L == 0)
        if ( (MAXL == 0) || (EPSH >= (MAXL-HZP)/MAXL) )
            if ( (MAXR == 0) || (EPSH >= (MAXR-HZ1)/MAXR) )
                FLAG1 = 0;
                EQUAL = 1;
            end
        end
    end

    if ( (MAXL == 0) && (MAXR == 0) )
        FLAG1 = 0;
    end

    if ( (MAXL > MAXR) && (MAXL <= HZP) && (MAXR < HZ1) )
        FLAG1 = 0;
    end

    if ( (MAXL <= MAXR) && (MAXR <= HZ1) && (MAXL < HZP) )
        FLAG1 = 0;
    end

    %	If a point outside the present reference set must be
    %	included, (i.e. the sign of the 1st point previously
    %	assumed is wrong) shift to the side of largest
    %	relative error first.

    if (FLAG1 == 1)
        
        FLAG2 = 1;
        
        if ( (MAXL > MAXR) && (MAXL > HZP) )
            FLAG2 = 0;
        end
        
        if ( (MAXL <= MAXR) && (MAXR <= HZ1) )
            FLAG2 = 0;
        end
        
        if (FLAG2 == 1)
            
            %		SHR entry. This section inserts a point from
            %		above the prescan point set
            
            INDEX = Z(2);
            
            %		shift point set down, dropping the lowest point
            
            Z(2:P) = Z((2:P)+1);
            
            ITEMP = P + 1;
            
            %		add the next high point
            Z(ITEMP)=INDR;
            
            %		if MAXL > 0 replace reference points from the left,
            %		stopping the 1st time the candidate for replacement
            %		is greater than in magnitude than the prospective
            %		replacee. Alternation of signs is preserved because
            %		non-replacement immediately terminates the process.
            
            if (MAXL > 0)
                I = 2;
                FLAG3 = 1;
                while ( (I <= P) && (FLAG3 == 1) )
                    ITEMP = Z(I);
                    if ( abs(H(INDL)) >= abs(H(ITEMP)) )
                        J = Z(I);
                        Z(I) = INDL;
                        INDL = INDEX;
                        INDEX = J;
                    else
                        FLAG3 = 0;
                    end
                    I = I + 1;
                end
            end
            
        else
            
            %	   SHL entry. This section inserts a point from below the
            %	   prescan point set.
            
            ITEMP = P + 1 ;
            INDEX = Z(ITEMP);
            
            Z((2:P)+1) = Z(2:P);
            
            %		store lowest point in Z(2)
            Z(2) = INDL;
            
            %		if MAXR > 0 replace reference points from the right,
            %		stopping the 1st time the candidate for replacement
            %		is greater than in magnitude than the prospective
            %		replacee.
            
            if (MAXR > 0)
                II = 2;
                FLAG3 = 1;
                while ( (II <= P) && (FLAG3 == 1) )
                    I = P + 2 - II;
                    ITEMP = I + 1;
                    HIGH = Z(ITEMP);
                    if ( abs(H(INDR)) >= abs(H(HIGH)) )
                        J = Z(ITEMP);
                        Z(ITEMP) = INDR;
                        INDR = INDEX;
                        INDEX = J;
                    else
                        FLAG3 = 0;
                    end
                    II = II + 1;
                end
            end
            
        end
        
    end

endfunction
%	****************************************** end of exch