/usr/share/octave/packages/optim-1.5.2/powell.m is in octave-optim 1.5.2-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 | ## Copyright (C) 2011 Nir Krakauer <nkrakauer@ccny.cuny.edu>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {[@var{p}, @var{obj_value}, @var{convergence}, @var{iters}, @var{nevs}] =} powell (@var{f}, @var{p0}, @var{control})
## Multidimensional minimization (direction-set method). Implements a direction-set (Powell's) method for multidimensional minimization of a function without calculation of the gradient [1, 2]
##
## @subheading Arguments
##
## @itemize @bullet
## @item
## @var{f}: name of function to minimize (string or handle), which should accept one input variable (see example for how to pass on additional input arguments)
##
## @item
## @var{p0}: An initial value of the function argument to minimize
##
## @item
## @var{options}: an optional structure, which can be generated by optimset, with some or all of the following fields:
## @itemize @minus
## @item
## MaxIter: maximum iterations (positive integer, or -1 or Inf for unlimited (default))
## @item
## TolFun: minimum amount by which function value must decrease in each iteration to continue (default is 1E-8)
## @item
## MaxFunEvals: maximum function evaluations (positive integer, or -1 or Inf for unlimited (default))
## @item
## SearchDirections: an n*n matrix whose columns contain the initial set of (presumably orthogonal) directions to minimize along, where n is the number of elements in the argument to be minimized for; or an n*1 vector of magnitudes for the initial directions (defaults to the set of unit direction vectors)
## @end itemize
## @end itemize
##
## @subheading Examples
##
## @example
## @group
## y = @@(x, s) x(1) ^ 2 + x(2) ^ 2 + s;
## o = optimset('MaxIter', 100, 'TolFun', 1E-10);
## s = 1;
## [x_optim, y_min, conv, iters, nevs] = powell(@@(x) y(x, s), [1 0.5], o); %pass y wrapped in an anonymous function so that all other arguments to y, which are held constant, are set
## %should return something like x_optim = [4E-14 3E-14], y_min = 1, conv = 1, iters = 2, nevs = 24
## @end group
##
## @end example
##
## @subheading Returns:
##
## @itemize @bullet
## @item
## @var{p}: the minimizing value of the function argument
## @item
## @var{obj_value}: the value of @var{f}() at @var{p}
## @item
## @var{convergence}: 1 if normal convergence, 0 if not
## @item
## @var{iters}: number of iterations performed
## @item
## @var{nevs}: number of function evaluations
## @end itemize
##
## @subheading References
##
## @enumerate
## @item
## Powell MJD (1964), An efficient method for finding the minimum of a function of several variables without calculating derivatives, @cite{Computer Journal}, 7 :155-162
##
## @item
## Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP (1992). @cite{Numerical Recipes in Fortran: The Art of Scientific Computing} (2nd Ed.). New York: Cambridge University Press (Section 10.5)
## @end enumerate
## @end deftypefn
## PKG_ADD: [~] = __all_opts__ ("powell");
function [p, obj_value, convergence, iters, nevs] = powell (f, p0, options = struct ())
if (nargin == 1 && ischar (f) && strcmpi (f, "defaults"))
p = optimset ("MaxIter", Inf,
"TolFun", 1e-8,
"MaxFunEvals", Inf,
"SearchDirections", []);
return
elseif (nargin < 2 || nargin > 3)
print_usage ();
endif
xi_set = 0;
xi = optimget (options, 'SearchDirections');
if (! isempty (xi))
if (isvector (xi)) # assume that xi is is n*1 or 1*n
xi = diag (xi);
endif
xi_set = 1;
endif
MaxIter = optimget (options, 'MaxIter', Inf);
if (MaxIter < 0)
MaxIter = Inf;
endif
MaxFunEvals = optimget (options, 'MaxFunEvals', Inf);
TolFun = optimget (options, 'TolFun', 1E-8);
nevs = 0;
iters = 0;
convergence = 0;
p = p0; # initial value of the argument being minimized
try
obj_value = f (p);
catch
error ("powell: F does not exist or cannot be evaluated");
end_try_catch
nevs++;
n = numel (p); # number of dimensions to minimize over
xit = zeros (n, 1);
if (! xi_set)
xi = eye (n);
endif
## do an iteration
while (iters <= MaxIter && nevs <= MaxFunEvals && ! convergence)
iters++;
pt = p; # best point as iteration begins
fp = obj_value; # value of the objective function as iteration begins
ibig = 0; # will hold direction along which the objective function decreased the most in this iteration
dlt = 0; # will hold decrease in objective function value in this iteration
for i = 1:n
xit = reshape (xi(:, i), size (p));
fptt = obj_value;
[a, obj_value, nev] = line_min (f, xit, {p});
nevs = nevs + nev;
p = p + a*xit;
change = fptt - obj_value;
if (change > dlt)
dlt = change;
ibig = i;
endif
endfor
if (2 * abs (fp - obj_value) <= TolFun * (abs (fp) + abs (obj_value)))
convergence = 1;
return
endif
if (iters == MaxIter)
disp ("iteration maximum exceeded");
return
endif
## attempt parabolic extrapolation
ptt = 2*p - pt;
xit = p - pt;
fptt = f(ptt);
nevs++;
if (fptt < fp) # check whether the extrapolation actually makes the objective function smaller
t = 2 * (fp - 2*obj_value + fptt) * (fp-obj_value-dlt)^2 - dlt * (fp-fptt)^2;
if (t < 0)
p = ptt;
[a, obj_value, nev] = line_min (f, xit, {p});
nevs = nevs + nev;
p = p + a*xit;
## add the net direction from this iteration to the direction set
xi(:, ibig) = xi(:, n);
xi(:, n) = xit(:);
endif
endif
endwhile
endfunction
|