This file is indexed.

/usr/share/octave/packages/optim-1.5.2/powell.m is in octave-optim 1.5.2-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
## Copyright (C) 2011 Nir Krakauer <nkrakauer@ccny.cuny.edu>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {[@var{p}, @var{obj_value}, @var{convergence}, @var{iters}, @var{nevs}] =} powell (@var{f}, @var{p0}, @var{control})
## Multidimensional minimization (direction-set method). Implements a direction-set (Powell's) method for multidimensional minimization of a function without calculation of the gradient [1, 2]
##
## @subheading Arguments
##
## @itemize @bullet
## @item
## @var{f}: name of function to minimize (string or handle), which should accept one input variable (see example for how to pass on additional input arguments)
##
## @item
## @var{p0}: An initial value of the function argument to minimize
##
## @item
## @var{options}: an optional structure, which can be generated by optimset, with some or all of the following fields:
## @itemize @minus
## @item
## MaxIter: maximum iterations  (positive integer, or -1 or Inf for unlimited (default))
## @item
## TolFun: minimum amount by which function value must decrease in each iteration to continue (default is 1E-8)
## @item
## MaxFunEvals: maximum function evaluations  (positive integer, or -1 or Inf for unlimited (default))
## @item
## SearchDirections: an n*n matrix whose columns contain the initial set of (presumably orthogonal) directions to minimize along, where n is the number of elements in the argument to be minimized for; or an n*1 vector of magnitudes for the initial directions (defaults to the set of unit direction vectors)
## @end itemize
## @end itemize
##
## @subheading Examples
##
## @example
## @group
## y = @@(x, s) x(1) ^ 2 + x(2) ^ 2 + s;
## o = optimset('MaxIter', 100, 'TolFun', 1E-10);
## s = 1;
## [x_optim, y_min, conv, iters, nevs] = powell(@@(x) y(x, s), [1 0.5], o); %pass y wrapped in an anonymous function so that all other arguments to y, which are held constant, are set
## %should return something like x_optim = [4E-14 3E-14], y_min = 1, conv = 1, iters = 2, nevs = 24
## @end group
##
## @end example
##
## @subheading Returns:
##
## @itemize @bullet
## @item
## @var{p}: the minimizing value of the function argument
## @item
## @var{obj_value}: the value of @var{f}() at @var{p}
## @item
## @var{convergence}: 1 if normal convergence, 0 if not
## @item
## @var{iters}: number of iterations performed
## @item
## @var{nevs}: number of function evaluations
## @end itemize
##
## @subheading References
##
## @enumerate
## @item
## Powell MJD (1964), An efficient method for finding the minimum of a function of several variables without calculating derivatives, @cite{Computer Journal}, 7 :155-162
##
## @item
## Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP (1992). @cite{Numerical Recipes in Fortran: The Art of Scientific Computing} (2nd Ed.). New York: Cambridge University Press (Section 10.5)
## @end enumerate
## @end deftypefn

## PKG_ADD: [~] = __all_opts__ ("powell");

function [p, obj_value, convergence, iters, nevs] = powell (f, p0, options = struct ())

  if (nargin == 1 && ischar (f) && strcmpi (f, "defaults"))
    p = optimset ("MaxIter", Inf,
                  "TolFun", 1e-8,
                  "MaxFunEvals", Inf,
                  "SearchDirections", []);
    return
  elseif (nargin < 2 || nargin > 3)
    print_usage ();
  endif

  xi_set = 0;
  xi = optimget (options, 'SearchDirections');
  if (! isempty (xi))
    if (isvector (xi)) # assume that xi is is n*1 or 1*n
      xi = diag (xi);
    endif
    xi_set = 1;
  endif

  MaxIter = optimget (options, 'MaxIter', Inf);
  if (MaxIter < 0)
    MaxIter = Inf;
  endif
  MaxFunEvals = optimget (options, 'MaxFunEvals', Inf);
  TolFun = optimget (options, 'TolFun', 1E-8);

  nevs = 0;
  iters = 0;
  convergence = 0;

  p = p0; # initial value of the argument being minimized
  try
    obj_value = f (p);
  catch
    error ("powell: F does not exist or cannot be evaluated");
  end_try_catch

  nevs++;

  n = numel (p); # number of dimensions to minimize over

  xit = zeros (n, 1);
  if (! xi_set)
    xi = eye (n);
  endif

  ## do an iteration
  while (iters <= MaxIter && nevs <= MaxFunEvals && ! convergence)
    iters++;
    pt = p; # best point as iteration begins
    fp = obj_value; # value of the objective function as iteration begins
    ibig = 0; # will hold direction along which the objective function decreased the most in this iteration
    dlt = 0; # will hold decrease in objective function value in this iteration
    for i = 1:n
      xit = reshape (xi(:, i), size (p));
      fptt = obj_value;
      [a, obj_value, nev] = line_min (f, xit, {p});
      nevs = nevs + nev;
      p = p + a*xit;
      change = fptt - obj_value;
      if (change > dlt)
        dlt = change;
        ibig = i;
      endif
    endfor

    if (2 * abs (fp - obj_value) <= TolFun * (abs (fp) + abs (obj_value)))
      convergence = 1;
      return
    endif

    if (iters == MaxIter)
      disp ("iteration maximum exceeded");
      return
    endif

    ## attempt parabolic extrapolation
    ptt = 2*p - pt;
    xit = p - pt;
    fptt = f(ptt);
    nevs++;
    if (fptt < fp) # check whether the extrapolation actually makes the objective function smaller
      t = 2 * (fp - 2*obj_value + fptt) * (fp-obj_value-dlt)^2 - dlt * (fp-fptt)^2;
      if (t < 0)
        p = ptt;
        [a, obj_value, nev] = line_min (f, xit, {p});
        nevs = nevs + nev;
        p = p + a*xit;

        ## add the net direction from this iteration to the direction set
        xi(:, ibig) = xi(:, n);
        xi(:, n) = xit(:);
      endif
    endif
  endwhile

endfunction