This file is indexed.

/usr/share/octave/packages/optim-1.5.2/quadprog.m is in octave-optim 1.5.2-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
## Copyright (C) 2015 Asma Afzal
## Copyright (C) 2013-2015 Julien Bect
## Copyright (C) 2000-2015 Gabriele Pannocchia
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {} quadprog (@var{H}, @var{f})
## @deftypefnx {Function File} {} quadprog (@var{H}, @var{f}, @var{A}, @var{b})
## @deftypefnx {Function File} {} quadprog (@var{H}, @var{f}, @var{A}, @var{b}, @var{Aeq}, @var{beq})
## @deftypefnx {Function File} {} quadprog (@var{H}, @var{f}, @var{A}, @var{b}, @var{Aeq}, @var{beq}, @var{lb}, @var{ub})
## @deftypefnx {Function File} {} quadprog (@var{H}, @var{f}, @var{A}, @var{b}, @var{Aeq}, @var{beq}, @var{lb}, @var{ub}, @var{x0})
## @deftypefnx {Function File} {} quadprog (@var{H}, @var{f}, @var{A}, @var{b}, @var{Aeq}, @var{beq}, @var{lb}, @var{ub}, @var{x0}, @var{options})
## @deftypefnx {Function File} {[@var{x}, @var{fval}, @var{exitflag}, @var{output}, @var{lambda}] =} quadprog (@dots{})
## Solve the quadratic program
## @example
## @group
## min 0.5 x'*H*x + x'*f
##  x
## @end group
## @end example
## subject to
## @example
## @group
## @var{A}*@var{x} <= @var{b},
## @var{Aeq}*@var{x} = @var{beq},
## @var{lb} <= @var{x} <= @var{ub}.
## @end group
## @end example
##
## The initial guess @var{x0} and the constraint arguments (@var{A} and
## @var{b}, @var{Aeq} and @var{beq}, @var{lb} and @var{ub}) can be set to
## the empty matrix (@code{[]}) if not given.  If the initial guess
## @var{x0} is feasible the algorithm is faster.
##
## @var{options} can be set with @code{optimset}, currently the only
## option is @code{MaxIter}, the maximum number of iterations (default:
## 200).
##
## Returned values:
##
## @table @var
## @item x
## Position of minimum.
##
## @item fval
## Value at the minimum.
##
## @item exitflag
## Status of solution:
##
## @table @code
## @item 0
## Maximum number of iterations reached.
##
## @item -2
## The problem is infeasible.
##
## @item -3
## The problem is not convex and unbounded
##
## @item 1
## Global solution found.
##
## @item 4
## Local solution found.
## @end table
##
## @item output
## Structure with additional information, currently the only field is
## @code{iterations}, the number of used iterations.
##
## @item lambda
## Structure containing Lagrange multipliers corresponding to the
## constraints. For equality constraints, the sign of the multipliers
## is chosen to satisfy the equation
## @example
## 0.5 H * x + f + A' * lambda_inequ + Aeq' * lambda_equ = 0 .
## @end example
## If lower and upper bounds are equal, or so close to each other that
## they are considered equal by the algorithm, only one of these
## bounds is considered active when computing the solution, and a
## positive lambda will be placed only at this bound.
##
## @end table
##
## This function calls Octave's @code{__qp__} back-end algorithm internally.
## @end deftypefn

## PKG_ADD: [~] = __all_opts__ ("quadprog");

## adapted from Octaves qp.m with enhanced handling of lambda by Asma
## Afzal <asmaafzal5@gmail.com>
##
## modified by Olaf Till <i7tiol@t-online.de>

function varargout = quadprog (H, f, varargin)

  if (nargin == 1 && ischar (H) && strcmp (H, "defaults"))
    varargout{1} = optimset ("MaxIter", 200);
    return;
  endif

  maxnargs = 10;

  nargs = nargin ();
  nout = nargout ();

  ## disallow, among others, incomplete pairs (matrix and vector) of
  ## constraint arguments, but allow giving only lower bounds, since
  ## specifying an empty matrix for upper bounds is allowed anyway
  if (nargs < 2 || nargs == 3 || nargs == 5 || nargs > maxnargs)
    print_usage();
  endif

  fname = "quadprog";

  allargin = horzcat (varargin, cell (1, maxnargs - nargs));

  [Ain, bin, Aeq, beq, lb, ub, x0, options] = allargin{:};

  if (isempty (options))
    options = struct ();
  elseif (! isstruct (options))
    error ("%s: options must be empty or a structure", fname);
  endif

  maxit = optimget (options, "MaxIter", 200);

  ## Checking the quadratic penalty
  if (! issquare (H))
    error ("%s: quadratic penalty matrix not square", fname);
  elseif (! ishermitian (H))
    ## warning ("quadratic penalty matrix not hermitian");
    H = (H + H')/2;
  endif
  n = rows (H);

  ## Checking linear penalty (if empty it is resized to the right
  ## dimension and filled with 0).
  f = check_vector (f, n, fname, "linear penalty");

  ## Checking the initial guess (if empty it is resized to the right
  ## dimension and filled with 0).
  x0 = check_vector (x0, n, fname, "initial guess");

  lambda = struct ("lower", [], "upper", [], "eqlin", [], "ineqlin", []);

  ## Equality constraint matrices
  if (isempty (Aeq) && isempty (beq))
    Aeq = zeros (0, n);
    beq = zeros (0, 1);
    n_eq = 0;
  else
    [n_eq, n1] = size (Aeq);
    if (n1 != n)
      error ("%s: equality constraint matrix has incorrect column dimension",
             fname);
    endif
    if (! isvector (beq) || numel (beq) != n_eq)
      error ("%s: equality constraint matrix and vector have inconsistent dimensions",
             fname);
    endif
    beq = beq(:);
  endif

  ## Inequality constraint matrices
  if (isempty (Ain) && isempty (bin))
    Ain = zeros (0, n);
    bin = zeros (0, 1);
  else
    [n_in, n1] = size (Ain);
    if (n1 != n)
      error ("%s: inequality constraint matrix has incorrect column dimension",
             fname);
    endif
    if (! isvector (bin) || numel (bin) != n_in)
      error ("%s: inequality constraint matrix and vector have inconsistent dimensions",
             fname);
    endif
    ## change from quadprog- to __qp__-conventions
    Ain = -Ain;
    bin = -bin;
    ##
    idx_ineq = isinf (bin) & bin < 0;
    ## Discard inequality constraints that have -Inf bounds since those
    ## will never be active but keep the index for ordering of lambda.
    bin(idx_ineq) = [];
    Ain(idx_ineq, :) = [];
  endif

  ## Bound constraints
  ##
  ## Discard lower bounds of -inf and upper bounds of +inf since those
  ## will never be active.
  if (! isempty (lb))
    if (! isvector (lb) || numel (lb) != n)
      error ("%s: lower bounds have incorrect dimensions", fname);
    elseif (isempty (ub))
      idx_lb = ! (isinf (lb) & lb < 0);
      Ain = [Ain; eye(n)(idx_lb,:)];
      bin = [bin; lb(idx_lb,1)];
    endif
  endif
  if (! isempty (ub))
    if (! isvector (ub) || numel (ub) != n)
      error ("%s: upper bounds have incorrect dimensions", fname);
    elseif (isempty (lb))
      idx_ub = ! (isinf (ub) & ub > 0);
      Ain = [Ain; -eye(n)(idx_ub,:)];
      bin = [bin; -ub(idx_ub,1)];
    endif
  endif
  count_not_ineq = 0;
  idx_bounds_ineq = true (n, 1);
  if (! isempty (lb) && ! isempty (ub))
    rtol = sqrt (eps);
    ## index upper and lower bounds far enough apart from each other
    ## -- the others will be treated as equality constraints
    idx_bounds_ineq = abs (ub - lb) >= rtol * (1 + abs (lb));
    idx_bounds_eq = ! idx_bounds_ineq;
    idx_lb = ! (isinf (lb) & lb < 0);
    idx_ub = ! (isinf (ub) & ub > 0);
    if (any (ub < lb & idx_bounds_ineq))
      error ("%s: some upper bounds lower than lower bounds", fname);
    endif
    ## possibly add to equality constraints
    Aeq = vertcat (Aeq, eye (n)(idx_bounds_eq, :));
    beq = vertcat (beq, .5 * (lb(idx_bounds_eq, 1) ...
                              + ub(idx_bounds_eq, 1)));
    ## possibly add to inequality constraints
    Ain = vertcat (Ain,
                   eye (n)(idx_bounds_ineq & idx_lb, :),
                   - eye (n)(idx_bounds_ineq & idx_ub, :));
    bin = vertcat (bin,
                   lb(idx_bounds_ineq & idx_lb, 1),
                   - ub(idx_bounds_ineq & idx_ub, 1));

    count_not_ineq = sum (idx_bounds_eq);
  endif

  n_eq = numel (beq);
  n_in = numel (bin);

  ## Now we should have the following QP:
  ##
  ##   min_x  0.5*x'*H*x + x'*f
  ##   s.t.   Aeq*x = beq
  ##          A*x >= b

  ## Check if the initial guess is feasible.
  if (isa (x0, "single") || isa (H, "single") || isa (f, "single")
      || isa (Aeq, "single") || isa (beq, "single"))
    rtol = sqrt (eps ("single"));
  else
    rtol = sqrt (eps);
  endif

  eq_infeasible = (n_eq > 0 && norm (Aeq * x0 - beq) > rtol * (1 + abs (beq)));
  in_infeasible = (n_in > 0 && any (Ain * x0 - bin < -rtol * (1 + abs (bin))));

  exitflag = 0;

  if (eq_infeasible || in_infeasible)
      ## The initial guess is not feasible.
      ## First define xbar that is feasible with respect to the equality
      ## constraints.
      if (eq_infeasible)
        if (rank (Aeq) < n_eq)
          error ("%s: equality constraint matrix must be full row rank",
                 fname);
        endif
        xbar = pinv (Aeq) * beq;
      else
        xbar = x0;
      endif

    ## Check if xbar is feasible with respect to the inequality
    ## constraints also.
    if (n_in > 0)
      res = Ain * xbar - bin;
      if (any (res < -rtol * (1 + abs (bin))))
        ## xbar is not feasible with respect to the inequality
        ## constraints.  Compute a step in the null space of the
        ## equality constraints, by solving a QP.  If the slack is
        ## small, we have a feasible initial guess.  Otherwise, the
        ## problem is infeasible.
        if (n_eq > 0)
          Z = null (Aeq);
          if (isempty (Z))
            ## The problem is infeasible because Aeq is square and full
            ## rank, but xbar is not feasible.
            exitflag = 6;
          endif
        endif

        if (exitflag != 6)
          ## Solve an LP with additional slack variables to find
          ## a feasible starting point.
          gamma = eye (n_in);
          if (n_eq > 0)
            Atmp = [Ain*Z, gamma];
            btmp = -res;
          else
            Atmp = [Ain, gamma];
            btmp = bin;
          endif
          ctmp = [zeros(n-n_eq, 1); ones(n_in, 1)];
          lb = [-Inf(n-n_eq,1); zeros(n_in,1)];
          ub = [];
          ctype = repmat ("L", n_in, 1);
          [P, dummy, status] = glpk (ctmp, Atmp, btmp, lb, ub, ctype);
          if ((status == 0)
              && all (abs (P(n-n_eq+1:end)) < rtol * (1 + norm (btmp))))
            ## We found a feasible starting point
            if (n_eq > 0)
              x0 = xbar + Z * P(1:n-n_eq);
            else
              x0 = P(1:n);
            endif
          else
            ## The problem is infeasible
            exitflag = 6;
          endif
        endif
      else
        ## xbar is feasible.  We use it a starting point.
        x0 = xbar;
      endif
    else
      ## xbar is feasible.  We use it a starting point.
      x0 = xbar;
    endif
  endif

  if (exitflag == 0)
    ## The initial (or computed) guess is feasible.
    ## We call the solver.
    [x, qp_lambda, exitflag, iter] = ...
    __qp__ (x0, H, f, Aeq, beq, Ain, bin, maxit);

  else
    iter = 0;
    x = x0;
  endif

  varargout = cell (1, nout);

  varargout{1} = x;

  if (nout >= 2)
    varargout{2} = 0.5 * x' * H * x + f' * x;;
  endif

  if (nout >= 3)
    switch (exitflag)
      case 0
        varargout{3} = 1;
      case 1
        varargout{3} = 4;
      case 2
        varargout{3} = -3;
      case 3
        varargout{3} = 0;
      case 6
        varargout{3} = -2;
    endswitch
  endif

  if (nout >= 4)
    varargout{4}.iterations = iter;
  endif

  if (nout >= 5 && exitflag == 0)
    lm_idx = 1; lambda_not_ineq = [];
    ## Pick multipliers corresponding to equality constraints first if
    ## present
    if (n_eq > 0)
      ## Matlab specifies in its online help pages the condition
      ## 'gradient f + lambda * gradient equality_constraints = 0',
      ## which determines this sign of lambda for equality
      ## constraints. The difference to __sqp__ probably results from
      ## the different 'direction' of _in_equality constraints (<=
      ## versus >=), which are usually handled together with equality
      ## constraints in the algorithm.
      lambda.eqlin = -qp_lambda(lm_idx:lm_idx + n_eq - count_not_ineq
                                       - 1);
      ## Multipliers corresponding to too close bounds making equality
      ## constraints
      lambda_not_ineq = -qp_lambda(lm_idx + n_eq - count_not_ineq:
                                   lm_idx + n_eq -1);
      lm_idx += n_eq;
    endif
    ## Pick multipliers corresponding to inequality constraints if
    ## present
    if (! isempty (allargin{1}))
      ineq_tmp = qp_lambda(lm_idx:lm_idx + sum (! idx_ineq) - 1);
      lambda.ineqlin = ineq_tmp;
      lm_idx = lm_idx + sum (! idx_ineq);
    endif

    ## Multipliers corresponding to bounds. Multipliers of two close
    ## bounds, having been treated as equality constraints, have to be
    ## inserted here (for one of these bounds only, otherwise we'd
    ## have an additional term with respect to the implicitely used
    ## Lagrangian at the result). The derivative of the equality
    ## constraint, given the way this constraint is (implicitely)
    ## formulated in this algorithm, is the same as the derivative of
    ## the corresponding upper bound, so lambda is assigned to the
    ## upper bound if it's positive. If it's negative, this can't be
    ## done (bounds correspond to inequality constraints), so it is
    ## negated and assigned to the lower bound instead.
    pos_idx = ! (neg_idx = lambda_not_ineq < 0);
    idx_pos_lambda = idx_neg_lambda = false (n, 1);
    idx_pos_lambda(idx_bounds_eq) = pos_idx;
    idx_neg_lambda(idx_bounds_eq) = neg_idx;

    ## Pick multipliers corresponding to lower bounds if present
    if (! isempty (allargin{5}))
      lambda.lower = zeros (n, 1);
      lb_tmp = qp_lambda(lm_idx:lm_idx + sum (idx_lb) - count_not_ineq
                                - 1);
      ## Take care of the position of too close and -Inf bounds
      idx = idx_bounds_ineq & idx_lb;
      lambda.lower(idx) = lb_tmp;
      lambda.lower(idx_neg_lambda) = -lambda_not_ineq(neg_idx);
      lambda.lower = lambda.lower(:);
      lm_idx += sum (idx_lb) - count_not_ineq;
    endif
    ## Pick multipliers corresponding to upper bounds if present
    if (! isempty (allargin{6}))
      lambda.upper = zeros (n, 1);
      ub_tmp = qp_lambda(lm_idx:lm_idx + sum (idx_ub) - count_not_ineq
                                - 1);
      ## Take care of the position of -Inf bounds
      idx = idx_bounds_ineq & idx_ub;
      lambda.upper(idx) = ub_tmp;
      lambda.upper(idx_pos_lambda) = lambda_not_ineq(pos_idx);
      lambda.upper = lambda.upper(:);
    endif
    varargout{5} = lambda;
  endif

endfunction

function vec = check_vector (vec, n, fname, vecname)

  if (isempty (vec))
    vec = zeros (n, 1);
  else
    if (! isvector (vec))
      error ("%s: %s must be a vector", fname, vecname);
    endif
    if (numel (vec) != n)
      error ("%s: %s has incorrect length", fname, vecname);
    endif
    vec = vec(:);
  endif

endfunction

%!test
%! H= diag([1; 0]);
%! f = [3; 4];
%! A= [-1 -3; 2 5; 3 4];
%! b = [-15; 100; 80];
%! l= zeros(2,1);
%! [x,fval,exitflag,output] = quadprog(H,f,A,b,[],[],l,[]);
%! assert(x,[0;5])
%! assert(fval,20)
%! assert(exitflag,1)
%! assert(output.iterations,1)

%!demo
%!  C = [0.9501    0.7620    0.6153    0.4057
%!      0.2311    0.4564    0.7919    0.9354
%!      0.6068    0.0185    0.9218    0.9169
%!      0.4859    0.8214    0.7382    0.4102
%!      0.8912    0.4447    0.1762    0.8936];
%!  %% Linear Inequality Constraints
%!  d = [0.0578; 0.3528; 0.8131; 0.0098; 0.1388];
%!  A =[0.2027    0.2721    0.7467    0.4659
%!      0.1987    0.1988    0.4450    0.4186
%!      0.6037    0.0152    0.9318    0.8462];
%!  b =[0.5251; 0.2026; 0.6721];
%!  %% Linear Equality Constraints
%!  Aeq = [3 5 7 9];
%!  beq = 4;
%!  %% Bound constraints
%!  lb = -0.1*ones(4,1);
%!  ub = ones(4,1);
%!  H = C' * C;
%!  f = -C' * d;
%!  [x, obj, flag, output, lambda]=quadprog (H, f, A, b, Aeq, beq, lb, ub)