This file is indexed.

/usr/share/octave/packages/signal-1.3.2/fir1.m is in octave-signal 1.3.2-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
## Copyright (C) 2000 Paul Kienzle <pkienzle@users.sf.net>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {@var{b} =} fir1 (@var{n}, @var{w})
## @deftypefnx {Function File} {@var{b} =} fir1 (@var{n}, @var{w}, @var{type})
## @deftypefnx {Function File} {@var{b} =} fir1 (@var{n}, @var{w}, @var{type}, @var{window})
## @deftypefnx {Function File} {@var{b} =} fir1 (@var{n}, @var{w}, @var{type}, @var{window}, @var{noscale})
##
## Produce an order @var{n} FIR filter with the given frequency cutoff @var{w},
## returning the @var{n}+1 filter coefficients in @var{b}.  If @var{w} is a
## scalar, it specifies the frequency cutoff for a lowpass or highpass filter.
## If @var{w} is a two-element vector, the two values specify the edges of a
## bandpass or bandstop filter.  If @var{w} is an N-element vector, each
## value specifies a band edge of a multiband pass/stop filter.
##
## The filter @var{type} can be specified with one of the following strings:
## "low", "high", "stop", "pass", "bandpass", "DC-0", or "DC-1".  The default
## is "low" is @var{w} is a scalar, "pass" if @var{w} is a pair, or "DC-0" if
## @var{w} is a vector with more than 2 elements.
##
## An optional shaping @var{window} can be given as a vector with length
## @var{n}+1.  If not specified, a Hamming window of length @var{n}+1 is used.
##
## With the option "noscale", the filter coefficients are not normalized. The
## default is to normalize the filter such that the magnitude response of the
## center of the first passband is 1.
##
## To apply the filter, use the return vector @var{b} with the @code{filter}
## function, for example @code{y = filter (b, 1, x)}.
##
## Examples:
## @example
## freqz (fir1 (40, 0.3));
## freqz (fir1 (15, [0.2, 0.5], "stop"));  # note the zero-crossing at 0.1
## freqz (fir1 (15, [0.2, 0.5], "stop", "noscale"));
## @end example
## @seealso{filter, fir2}
## @end deftypefn

## FIXME: Consider using exact expression (in terms of sinc) for the
##        impulse response rather than relying on fir2.
## FIXME: Find reference to the requirement that order be even for
##        filters that end high.  Figure out what to do with the
##        window in these cases

function b = fir1(n, w, varargin)

  if nargin < 2 || nargin > 5
    print_usage;
  endif

  ## Assign default window, filter type and scale.
  ## If single band edge, the first band defaults to a pass band to
  ## create a lowpass filter.  If multiple band edges, the first band
  ## defaults to a stop band so that the two band case defaults to a
  ## band pass filter.  Ick.
  window  = [];
  scale   = 1;
  ftype   = (length(w)==1);

  ## sort arglist, normalize any string
  for i=1:length(varargin)
    arg = varargin{i};
    if ischar(arg), arg=lower(arg);endif
    if isempty(arg) continue; endif  # octave bug---can't switch on []
    switch arg
      case {'low','stop','dc-1'},             ftype  = 1;
      case {'high','pass','bandpass','dc-0'}, ftype  = 0;
      case {'scale'},                         scale  = 1;
      case {'noscale'},                       scale  = 0;
      otherwise                               window = arg;
    endswitch
  endfor

  ## build response function according to fir2 requirements
  bands = length(w)+1;
  f = zeros(1,2*bands);
  f(1) = 0; f(2*bands)=1;
  f(2:2:2*bands-1) = w;
  f(3:2:2*bands-1) = w;
  m = zeros(1,2*bands);
  m(1:2:2*bands) = rem([1:bands]-(1-ftype),2);
  m(2:2:2*bands) = m(1:2:2*bands);

  ## Increment the order if the final band is a pass band.  Something
  ## about having a nyquist frequency of zero causing problems.
  if rem(n,2)==1 && m(2*bands)==1,
    warning("n must be even for highpass and bandstop filters. Incrementing.");
    n = n+1;
    if isvector(window) && isreal(window) && !ischar(window)
      ## Extend the window using interpolation
      M = length(window);
      if M == 1,
        window = [window; window];
      elseif M < 4
        window = interp1(linspace(0,1,M),window,linspace(0,1,M+1),'linear');
      else
        window = interp1(linspace(0,1,M),window,linspace(0,1,M+1),'spline');
      endif
    endif
  endif

  ## compute the filter
  b = fir2(n, f, m, [], 2, window);

  ## normalize filter magnitude
  if scale == 1
    ## find the middle of the first band edge
    ## find the frequency of the normalizing gain
    if m(1) == 1
      ## if the first band is a passband, use DC gain
      w_o = 0;
    elseif f(4) == 1
      ## for a highpass filter,
      ## use the gain at half the sample frequency
      w_o = 1;
    else
      ## otherwise, use the gain at the center
      ## frequency of the first passband
      w_o = f(3) + (f(4)-f(3))/2;
    endif

    ## compute |h(w_o)|^-1
    renorm = 1/abs(polyval(b, exp(-1i*pi*w_o)));

    ## normalize the filter
    b = renorm*b;
  endif

endfunction

%!demo
%! freqz(fir1(40,0.3));
%!demo
%! freqz(fir1(15,[0.2, 0.5], 'stop'));  # note the zero-crossing at 0.1
%!demo
%! freqz(fir1(15,[0.2, 0.5], 'stop', 'noscale'));

%!assert(fir1(2, .5, 'low', @hanning, 'scale'), [0 1 0]);
%!assert(fir1(2, .5, 'low', "hanning", 'scale'), [0 1 0]);
%!assert(fir1(2, .5, 'low', hanning(3), 'scale'), [0 1 0]);

%!assert(fir1(10,.5,'noscale'), fir1(10,.5,'low','hamming','noscale'));
%!assert(fir1(10,.5,'high'), fir1(10,.5,'high','hamming','scale'));
%!assert(fir1(10,.5,'boxcar'), fir1(10,.5,'low','boxcar','scale'));
%!assert(fir1(10,.5,'hanning','scale'), fir1(10,.5,'scale','hanning','low'));
%!assert(fir1(10,.5,'haNNing','NOscale'), fir1(10,.5,'noscale','Hanning','LOW'));
%!assert(fir1(10,.5,'boxcar',[]), fir1(10,.5,'boxcar'));

%% Test expected magnitudes of passbands, stopbands, and cutoff frequencies

%!test
%! b = fir1 (30, 0.3);
%! h = abs (freqz (b, 1, [0, 0.3, 1], 2));
%! assert (h(1), 1, 1e-3)
%! assert (all (h(2:3) <= [1/sqrt(2), 3e-3]))

%!test
%! b = fir1 (30, 0.7, "high");
%! h = abs (freqz (b, 1, [0, 0.7, 1], 2));
%! assert (h(3), 1, 1e-3)
%! assert (all (h(1:2) <= [3e-3, 1/sqrt(2)]))

%!test
%! b = fir1 (30, [0.3, 0.7]);
%! h = abs (freqz (b, 1, [0, 0.3, 0.5, 0.7, 1], 2));
%! assert (h(3), 1, 1e-3)
%! assert (all (h([1:2, 4:5]) <= [3e-3, 1/sqrt(2), 1/sqrt(2), 3e-3]))

%!test
%! b = fir1 (50, [0.3, 0.7], "stop");
%! h = abs (freqz (b, 1, [0, 0.3, 0.5, 0.7, 1], 2));
%! assert (h(1), 1, 1e-3)
%! assert (h(5), 1, 1e-3)
%! assert (all (h(2:4) <= [1/sqrt(2), 3e-3, 1/sqrt(2)]))