/usr/share/octave/packages/signal-1.3.2/fir1.m is in octave-signal 1.3.2-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 | ## Copyright (C) 2000 Paul Kienzle <pkienzle@users.sf.net>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{b} =} fir1 (@var{n}, @var{w})
## @deftypefnx {Function File} {@var{b} =} fir1 (@var{n}, @var{w}, @var{type})
## @deftypefnx {Function File} {@var{b} =} fir1 (@var{n}, @var{w}, @var{type}, @var{window})
## @deftypefnx {Function File} {@var{b} =} fir1 (@var{n}, @var{w}, @var{type}, @var{window}, @var{noscale})
##
## Produce an order @var{n} FIR filter with the given frequency cutoff @var{w},
## returning the @var{n}+1 filter coefficients in @var{b}. If @var{w} is a
## scalar, it specifies the frequency cutoff for a lowpass or highpass filter.
## If @var{w} is a two-element vector, the two values specify the edges of a
## bandpass or bandstop filter. If @var{w} is an N-element vector, each
## value specifies a band edge of a multiband pass/stop filter.
##
## The filter @var{type} can be specified with one of the following strings:
## "low", "high", "stop", "pass", "bandpass", "DC-0", or "DC-1". The default
## is "low" is @var{w} is a scalar, "pass" if @var{w} is a pair, or "DC-0" if
## @var{w} is a vector with more than 2 elements.
##
## An optional shaping @var{window} can be given as a vector with length
## @var{n}+1. If not specified, a Hamming window of length @var{n}+1 is used.
##
## With the option "noscale", the filter coefficients are not normalized. The
## default is to normalize the filter such that the magnitude response of the
## center of the first passband is 1.
##
## To apply the filter, use the return vector @var{b} with the @code{filter}
## function, for example @code{y = filter (b, 1, x)}.
##
## Examples:
## @example
## freqz (fir1 (40, 0.3));
## freqz (fir1 (15, [0.2, 0.5], "stop")); # note the zero-crossing at 0.1
## freqz (fir1 (15, [0.2, 0.5], "stop", "noscale"));
## @end example
## @seealso{filter, fir2}
## @end deftypefn
## FIXME: Consider using exact expression (in terms of sinc) for the
## impulse response rather than relying on fir2.
## FIXME: Find reference to the requirement that order be even for
## filters that end high. Figure out what to do with the
## window in these cases
function b = fir1(n, w, varargin)
if nargin < 2 || nargin > 5
print_usage;
endif
## Assign default window, filter type and scale.
## If single band edge, the first band defaults to a pass band to
## create a lowpass filter. If multiple band edges, the first band
## defaults to a stop band so that the two band case defaults to a
## band pass filter. Ick.
window = [];
scale = 1;
ftype = (length(w)==1);
## sort arglist, normalize any string
for i=1:length(varargin)
arg = varargin{i};
if ischar(arg), arg=lower(arg);endif
if isempty(arg) continue; endif # octave bug---can't switch on []
switch arg
case {'low','stop','dc-1'}, ftype = 1;
case {'high','pass','bandpass','dc-0'}, ftype = 0;
case {'scale'}, scale = 1;
case {'noscale'}, scale = 0;
otherwise window = arg;
endswitch
endfor
## build response function according to fir2 requirements
bands = length(w)+1;
f = zeros(1,2*bands);
f(1) = 0; f(2*bands)=1;
f(2:2:2*bands-1) = w;
f(3:2:2*bands-1) = w;
m = zeros(1,2*bands);
m(1:2:2*bands) = rem([1:bands]-(1-ftype),2);
m(2:2:2*bands) = m(1:2:2*bands);
## Increment the order if the final band is a pass band. Something
## about having a nyquist frequency of zero causing problems.
if rem(n,2)==1 && m(2*bands)==1,
warning("n must be even for highpass and bandstop filters. Incrementing.");
n = n+1;
if isvector(window) && isreal(window) && !ischar(window)
## Extend the window using interpolation
M = length(window);
if M == 1,
window = [window; window];
elseif M < 4
window = interp1(linspace(0,1,M),window,linspace(0,1,M+1),'linear');
else
window = interp1(linspace(0,1,M),window,linspace(0,1,M+1),'spline');
endif
endif
endif
## compute the filter
b = fir2(n, f, m, [], 2, window);
## normalize filter magnitude
if scale == 1
## find the middle of the first band edge
## find the frequency of the normalizing gain
if m(1) == 1
## if the first band is a passband, use DC gain
w_o = 0;
elseif f(4) == 1
## for a highpass filter,
## use the gain at half the sample frequency
w_o = 1;
else
## otherwise, use the gain at the center
## frequency of the first passband
w_o = f(3) + (f(4)-f(3))/2;
endif
## compute |h(w_o)|^-1
renorm = 1/abs(polyval(b, exp(-1i*pi*w_o)));
## normalize the filter
b = renorm*b;
endif
endfunction
%!demo
%! freqz(fir1(40,0.3));
%!demo
%! freqz(fir1(15,[0.2, 0.5], 'stop')); # note the zero-crossing at 0.1
%!demo
%! freqz(fir1(15,[0.2, 0.5], 'stop', 'noscale'));
%!assert(fir1(2, .5, 'low', @hanning, 'scale'), [0 1 0]);
%!assert(fir1(2, .5, 'low', "hanning", 'scale'), [0 1 0]);
%!assert(fir1(2, .5, 'low', hanning(3), 'scale'), [0 1 0]);
%!assert(fir1(10,.5,'noscale'), fir1(10,.5,'low','hamming','noscale'));
%!assert(fir1(10,.5,'high'), fir1(10,.5,'high','hamming','scale'));
%!assert(fir1(10,.5,'boxcar'), fir1(10,.5,'low','boxcar','scale'));
%!assert(fir1(10,.5,'hanning','scale'), fir1(10,.5,'scale','hanning','low'));
%!assert(fir1(10,.5,'haNNing','NOscale'), fir1(10,.5,'noscale','Hanning','LOW'));
%!assert(fir1(10,.5,'boxcar',[]), fir1(10,.5,'boxcar'));
%% Test expected magnitudes of passbands, stopbands, and cutoff frequencies
%!test
%! b = fir1 (30, 0.3);
%! h = abs (freqz (b, 1, [0, 0.3, 1], 2));
%! assert (h(1), 1, 1e-3)
%! assert (all (h(2:3) <= [1/sqrt(2), 3e-3]))
%!test
%! b = fir1 (30, 0.7, "high");
%! h = abs (freqz (b, 1, [0, 0.7, 1], 2));
%! assert (h(3), 1, 1e-3)
%! assert (all (h(1:2) <= [3e-3, 1/sqrt(2)]))
%!test
%! b = fir1 (30, [0.3, 0.7]);
%! h = abs (freqz (b, 1, [0, 0.3, 0.5, 0.7, 1], 2));
%! assert (h(3), 1, 1e-3)
%! assert (all (h([1:2, 4:5]) <= [3e-3, 1/sqrt(2), 1/sqrt(2), 3e-3]))
%!test
%! b = fir1 (50, [0.3, 0.7], "stop");
%! h = abs (freqz (b, 1, [0, 0.3, 0.5, 0.7, 1], 2));
%! assert (h(1), 1, 1e-3)
%! assert (h(5), 1, 1e-3)
%! assert (all (h(2:4) <= [1/sqrt(2), 3e-3, 1/sqrt(2)]))
|