This file is indexed.

/usr/share/octave/packages/tisean-0.2.3/boxcount.m is in octave-tisean 0.2.3-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
## Copyright (C) 1996-2015 Piotr Held
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or
## modify it under the terms of the GNU General Public
## License as published by the Free Software Foundation;
## either version 3 of the License, or (at your option) any
## later version.
##
## Octave is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied
## warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
## PURPOSE.  See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public
## License along with Octave; see the file COPYING.  If not,
## see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn{Function File} {@var{output} =} boxcount (@var{S})
## @deftypefnx{Function File} {@var{output} =} boxcount (@var{S}, @var{paramName}, @var{paramValue}, @dots{})
##
## Estimates the Renyi entropy of Qth order using a partition of the phase
## space instead of using the Grassberger-Procaccia scheme.
##
## The program also can handle multivariate data, so that the phase space is
## build of the components of the time series plus a temporal embedding, if
## desired. Also, note that the memory requirement does not increase
## exponentially like 1/epsilon^M but only like M*(length of series). So it can
## also be used for small epsilon and large M.
## No finite sample corrections are implemented so far.
##
## @strong{Input}
##
## @table @var
## @item S
## This function always assumes that each time series is along the longer 
## dimension of matrix @var{S}. It also assumes that every dimension 
## (counting along the shorter dimension) of @var{S} is considered a 
## component of the time series.
## @end table
##
## @strong{Parameters}
##
## @table @var
## @item m
## The maximum embedding dimension [default = 10].
## @item d
## The delay used [default = 1].
## @item q
## Order of the entropy [default = 2.0].
## @item rlow
## Minimum length scale [default = 1e-3].
## @item rhigh
## Maximum length scale [default = 1].
## @item eps_no
## Number of length scale values [default = 20].
## @end table
##
## @strong{Output}
##
## The output is alligned with the input. If the input components where column
## vectors then the output is a 
## maximum-embedding-dimension x number-of-components struct array with the
## following fields:
## @table @var
## @item dim
## Holds the embedding dimension of the struct.
## @item entropy
## The entropy output. Contains three columns which hold:
## @enumerate
## @item
## epsilon
## @item
## Qth order entropy (Hq (dimension,epsilon))
## @item
## Qth order differential entropy 
## (Hq (dimension,epsilon) - Hq (dimension-1,epsilon))
## @end enumerate
## @end table
##
## @seealso{demo boxcount, d2, c1}
##
## @strong{Algorithms}
##
## The algorithms for this functions have been taken from the TISEAN package.
## @end deftypefn

## Author: Piotr Held <pjheld@gmail.com>.
## This function is based on boxcount of TISEAN 3.0.1 
## https://github.com/heggus/Tisean"

function output = boxcount (S, varargin)

  if (nargin < 1)
    print_usage;
  endif

  if ((ismatrix (S) == false) || (isreal(S) == false) || ...
       (isreal(S) == false))
    error ('Octave:invalid-input-arg', "S must be a realmatrix");
  endif

  # Default values
  maxembed = 10;
  delay    = 1;
  Q        = 2;
  epsmin   = 1e-3;
  epsmax   = 1;
  epscount = 20;

  #### Parse the input
  p = inputParser ();
  p.FunctionName = "d2";

  isPositiveIntScalar    = @(x) isreal(x) && isscalar (x) && ...
                             (x > 0) && (x-round(x) == 0);
  isPositiveScalar       = @(x) isreal(x) && isscalar (x) && (x > 0);

  p.addParamValue ("m", maxembed, isPositiveIntScalar);
  p.addParamValue ("d", delay, isPositiveIntScalar);
  p.addParamValue ("q", Q, isPositiveScalar);
  p.addParamValue ("rlow", epsmin, isPositiveScalar);
  p.addParamValue ("rhigh", epsmax, isPositiveScalar);
  p.addParamValue ("eps_no", epscount, isPositiveIntScalar);

  p.parse (varargin{:});

  # Assign inputs
  maxembed  = p.Results.m;
  delay     = p.Results.d;
  Q         = p.Results.q;
  epsmin    = p.Results.rlow;
  epsminset = !ismember ('rlow', p.UsingDefaults);
  epsmax    = p.Results.rhigh;
  epsmaxset = !ismember ('rhigh', p.UsingDefaults);
  epscount  = p.Results.eps_no;

  if (epsmin >= epsmax)
    error ("Octave:invalid-input-arg", ["'rlow' cannot be greater or equal "...
                                        "to 'rhigh'"]);
  endif

  # Correct S to always have more rows than columns
  trnspsd = false;
  if (rows (S) < columns (S))
    S = S.';
    trnspsd = true;
  endif

  output = __boxcount__ (S, maxembed, delay, Q, epsmin, epsminset, epsmax, ...
                         epsmaxset, epscount);

  if (trnspsd)
    output = output.';
  endif

endfunction

%!demo
%! res = boxcount (henon (1000),'m',5);
%!
%! do_plot_entrop = @(x) semilogx (x{1}(:,1),x{1}(:,3),'g');
%! hold on
%! # Show only for first component
%! arrayfun (do_plot_entrop, {res(:,1).entropy});
%! hold off
%! axis tight
%! xlabel ("Epsilon")
%! ylabel ("Differential Entropies");
%! title ("Entropies")
%!###############################################################

%!shared boxcount_res
%! boxcount_res = [2.556748 -0 -0;0.4546613 1.486674 1.486674;0.08085148 3.235789 3.235789;0.01437765 4.783408 4.783408;0.002556748 6.040018 6.040018;2.556748 -0 0;0.4546613 2.362885 0.8762114;0.08085148 4.498971 1.263182;0.01437765 6.037491 1.254084;0.002556748 6.728119 0.6881009;2.556748 -0 0;0.4546613 3.101632 0.7387475;0.08085148 5.287536 0.7885657;0.01437765 6.427517 0.3900256;0.002556748 6.843597 0.1154786;2.556748 -0 0;0.4546613 3.41436 0.3127275;0.08085148 5.496185 0.2086484;0.01437765 6.504975 0.07745806;0.002556748 6.858778 0.01518056];

%!test
%! res = boxcount (henon (1000), 'm', 2, 'd', 2, 'eps_no', 5);
%! assert (cell2mat (vec (reshape ({res.entropy}, size (res)).')),
%!         boxcount_res, -1e-6);

%% Check if transposition executes properly
%!test
%! res = boxcount (henon (1000).', 'm', 2, 'd', 2, 'eps_no', 5);
%! assert (cell2mat (vec (reshape ({res.entropy}, size (res).'))),
%!         boxcount_res, -1e-6);

%% check input validation
%!error <greater> boxcount (henon (100), 'rlow',4,'rhigh',1);
%!error <equal> boxcount (henon (100), 'rlow',1,'rhigh',1);