/usr/share/octave/packages/tisean-0.2.3/c1.m is in octave-tisean 0.2.3-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 | ## Copyright (C) 1996-2015 Piotr Held
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or
## modify it under the terms of the GNU General Public
## License as published by the Free Software Foundation;
## either version 3 of the License, or (at your option) any
## later version.
##
## Octave is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied
## warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
## PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public
## License along with Octave; see the file COPYING. If not,
## see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn{Function File} {@var{output} =} c1 (@var{S})
## @deftypefnx{Function File} {@var{output} =} c1 (@var{S}, @var{paramName}, @var{paramValue}, @dots{})
##
## Computers curves for the fixed mass computation of information dimension
## (mentioned in TISEAN 3.0.1 documentation).
##
## A logarithmic range of masses between 1/N and 1 is realised by varying the
## neighbour order k as well as the subsequence length n. For a given mass
## k/n, n is chosen as small is possible as long as k is not smaller than the
## value specified by parameter @var{k} .
##
## You will probably use the auxiliary functions c2d or c2t to process the
## output further. The formula used for the Gaussian kernel correlation sum
## does not apply to the information dimension.
##
## @strong{Input}
##
## @table @var
## @item S
## This function always assumes that each time series is along the longer
## dimension of matrix @var{S}. It also assumes that every dimension
## (counting along the shorter dimension) of @var{S} is considered a
## component of the time series.
## @end table
##
## @strong{Parameters}
##
## @table @var
## @item mindim
## The minimum embedding dimension [default = 1].
## @item maxdim
## The maximum embedding dimension [default = 10].
## @item d
## The delay used [default = 1].
## @item t
## Minimum time separation [default = 0].
## @item n
## The number of reference points. That number of points are selected at
## random from all time indices [default = 100].
## @item res
## Resolution, values per octave [default = 2].
## @item i
## Seed for the random numbers [use default seed].
## @item k
## Maximum number of neighbors [default = 100].
## @end table
##
## @strong{Switch}
##
## @table @var
## @item verbose
## Display information about current mass during execution.
## @end table
##
## @strong{Output}
##
## The output is a @var{maxdim} - @var{mindim} + 1 x 1 struct array with the
## following fields:
## @table @var
## @item dim
## The embedding dimension of the struct.
## @item c1
## A matrix with two collumns that contain the following data:
## @enumerate
## @item
## radius
## @item
## 'mass'
## @end enumerate
## @end table
##
## @seealso{demo c1, c2d, c2t}
##
## @strong{Algorithms}
##
## The algorithms for this functions have been taken from the TISEAN package.
## @end deftypefn
## Author: Piotr Held <pjheld@gmail.com>.
## This function is based on c1 of TISEAN 3.0.1
## https://github.com/heggus/Tisean"
function output = c1 (S, varargin)
if (nargin < 1)
print_usage;
endif
if ((ismatrix (S) == false) || (isreal(S) == false) || ...
(isreal(S) == false))
error ('Octave:invalid-input-arg', "S must be a realmatrix");
endif
# Default values
mindim = 1;
maxdim = 10;
delay = 1;
tmin = 0;
cmin = 100;
resolution = 2;
seed = 0;
kmax = 100;
#### Parse the input
p = inputParser ();
p.FunctionName = "c1";
isPositiveIntScalar = @(x) isreal(x) && isscalar (x) && ...
(x > 0) && (x-round(x) == 0);
isNonNegativeIntScalar = @(x) isPositiveIntScalar (x) || (x == 0);
isNonNegativeScalar = @(x) isreal(x) && isscalar (x) && (x >=0);
p.addParamValue ("mindim", mindim, isPositiveIntScalar);
p.addParamValue ("maxdim", maxdim, isPositiveIntScalar);
p.addParamValue ("d", delay, isPositiveIntScalar);
p.addParamValue ("t", tmin, isNonNegativeIntScalar);
p.addParamValue ("n", cmin, isPositiveIntScalar);
p.addParamValue ("res", resolution, isPositiveIntScalar);
p.addParamValue ("i", seed, isNonNegativeScalar);
p.addParamValue ("k", kmax, isPositiveIntScalar);
p.addSwitch ("verbose");
p.parse (varargin{:});
# Assign input
mindim = p.Results.mindim;
maxdim = p.Results.maxdim;
delay = p.Results.d;
tmin = p.Results.t;
cmin = p.Results.n;
resolution = p.Results.res;
seed = p.Results.i;
kmax = p.Results.k;
verbose = p.Results.verbose;
if (mindim > maxdim)
warning ("Octave:tisean", ["Parameter 'mindim' is greater than ", ...
"'maxdim', setting 'mindim' = 'maxdim'"]);
mindim = maxdim;
endif
# Correct S to always have more rows than columns
trnspsd = false;
if (rows (S) < columns (S))
S = S.';
trnspsd = true;
endif
output = __c1__ (S, mindim, maxdim, delay, tmin, cmin, resolution, seed,
kmax, verbose);
endfunction
%!demo
%! res = c1 (henon (5000)(:,1), 'd', 1, 'maxdim', 6, 't',50, 'n', 500);
%! slope = c2d (res, 2);
%!
%! do_plot_c1 = @(x) semilogx (x{1}(:,1),x{1}(:,2),'g');
%! hold on
%! arrayfun (do_plot_c1, {slope.d});
%! plot ([5e-4 1],[1.2 1.2])
%! hold off
%! axis tight
%! ylim ([0 3]);
%! xlabel ("Epsilon")
%! ylabel ("Local slopes");
%! title ("Information dimension")
%!###############################################################
%% testing if it works with default parameters
%!test
%% res_c1 was generated by TISEAN 3.0.1
%! res_c1 = [0.00204866193 0.000562021392;0.00458388403 0.00152773259;0.00732116727 0.00251880521;0.0114847319 0.00351527636;0.0178178754 0.00551304966;0.0229953099 0.00751305372;0.0337692834 0.0115151331;0.0432167873 0.0155181978;0.070036374 0.0225279164;0.0809115991 0.0315354168;0.105735436 0.045548249;0.137048692 0.0635655001;0.198512435 0.0905919373;0.249011219 0.127565667;0.336370319 0.180583045;0.417932093 0.255131334;0.533079803 0.361822665;0.760820627 0.510262668;1.17550445 0.726286411;0.00397582119 0.000562021392;0.00887203496 0.00152773259;0.0129663227 0.00251880521;0.0233632866 0.00451370422;0.0256882776 0.00551304966;0.0377443098 0.00851340499;0.0444159135 0.0115151331;0.0625304207 0.0165190343;0.0792045668 0.0225279164;0.112165064 0.0325363018;0.142160922 0.045548249;0.183529988 0.0645664856;0.247998312 0.0905919373;0.365789354 0.128554597;0.479705334 0.181571603;0.648174882 0.25644654;0.828185916 0.361822665;1.0652355 0.512893081;1.51780188 0.726286411];
%! clear __c1__
%! res = c1 (henon (1000), 'maxdim', 2);
%! res_mat = cell2mat({res.c1}.');
%% row 23 and 25 are excluded because TISEAN data was calculated using floats
%% this program uses doubles
%! good_idx = [1:22,24,26:38];
%! assert (res_mat(good_idx,:), res_c1(good_idx,:),-1e-5);
%% bad_idx are used as the idx of those that were further apart than the rest
%! bad_idx = setdiff (1:length(res_c1),good_idx);
%! assert (res_mat(bad_idx,:), res_c1(bad_idx,:),6e-3);
%% testing if works with other-than-default parameters
%!test
%! res_c1 = [0.0343293324 0.000628733949;0.0685995296 0.00170907611;0.104914345 0.00281779026;0.147767007 0.00393254356;0.187380955 0.00616745465;0.242883027 0.00840486214;0.320845127 0.0117625576;0.424331248 0.0162406135;0.5311203 0.0229629427;0.638983071 0.0319196843;0.77487731 0.0453561395;0.95007056 0.0643920898;1.13252032 0.0912670717;1.33960843 0.129390419;1.51084828 0.182906702;1.65632439 0.259117812;1.78787661 0.365813404;1.93386149 0.518235624;2.13333058 0.731626809;0.0578132086 0.000630145252;0.106152184 0.00171291234;0.163010269 0.0028241151;0.214579925 0.00394137064;0.280628532 0.00618129829;0.353775769 0.00842372701;0.448207438 0.0117889596;0.582583368 0.0162770674;0.693925321 0.0230144858;0.805182397 0.0319913328;0.948441863 0.0454579443;1.12319851 0.0645366237;1.28063464 0.0914719254;1.44319057 0.129558906;1.57120717 0.183243573;1.71812892 0.259117812;1.83539987 0.367163211;1.98069465 0.518235624;2.16835737 0.737046182;0.0653617978 0.000630145252;0.120350979 0.00171291234;0.182360902 0.0028241151;0.22783263 0.00394137064;0.300161123 0.00618129829;0.384833038 0.00842372701;0.497192621 0.0117889596;0.616096795 0.0162770674;0.750326335 0.0230144858;0.908238411 0.0331135131;1.03522205 0.0465802066;1.23226273 0.0656589493;1.37276983 0.0925942659;1.53525198 0.130750626;1.65205204 0.184261546;1.77773058 0.260474414;1.88386154 0.368523091;2.01883292 0.520948827;2.19400668 0.737046182];
%! clear __c1__
%! res = c1 (henon (1000), 'mindim', 8, 'd',2,'i',0.5,'t',50,'n',500);
%% row 1, 2, 22 are excluded because TISEAN data was calculated using floats
%% this program uses doubles
%! good_idx = [3:21,23:57];
%! assert (cell2mat({res.c1}.')(good_idx,:), res_c1(good_idx,:), 1e-5);
%% bad_idx are used as the idx of those that were further apart than the rest
%! bad_idx = setdiff (1:length(res_c1),good_idx);
%! assert (cell2mat({res.c1}.')(bad_idx,:), res_c1(bad_idx,:),-3e-3);
%% Test input validation
%% Promote warnings to error to not execute program
%!error <greater> warning("error", "Octave:tisean"); c1 ([1 2 3], 'mindim', 3, 'maxdim', 2);
|