This file is indexed.

/usr/share/octave/packages/tisean-0.2.3/c1.m is in octave-tisean 0.2.3-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
## Copyright (C) 1996-2015 Piotr Held
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or
## modify it under the terms of the GNU General Public
## License as published by the Free Software Foundation;
## either version 3 of the License, or (at your option) any
## later version.
##
## Octave is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied
## warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
## PURPOSE.  See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public
## License along with Octave; see the file COPYING.  If not,
## see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn{Function File} {@var{output} =} c1 (@var{S})
## @deftypefnx{Function File} {@var{output} =} c1 (@var{S}, @var{paramName}, @var{paramValue}, @dots{})
##
## Computers curves for the fixed mass computation of information dimension
## (mentioned in TISEAN 3.0.1 documentation).
##
## A logarithmic range of masses between 1/N and 1 is realised by varying the
## neighbour order k as well as the subsequence length n. For a given mass
## k/n, n is chosen as small is possible as long as k is not smaller than the
## value specified by parameter @var{k} .
##
## You will probably use the auxiliary functions c2d or c2t to process the
## output further. The formula used for the Gaussian kernel correlation sum
## does not apply to the information dimension. 
##
## @strong{Input}
##
## @table @var
## @item S
## This function always assumes that each time series is along the longer 
## dimension of matrix @var{S}. It also assumes that every dimension 
## (counting along the shorter dimension) of @var{S} is considered a 
## component of the time series.
## @end table
##
## @strong{Parameters}
##
## @table @var
## @item mindim
## The minimum embedding dimension [default = 1].
## @item maxdim
## The maximum embedding dimension [default = 10].
## @item d
## The delay used [default = 1].
## @item t
## Minimum time separation [default = 0].
## @item n
## The number of reference points. That number of points are selected at
## random from all time indices [default = 100].
## @item res
## Resolution, values per octave [default = 2].
## @item i
## Seed for the random numbers [use default seed].
## @item k
## Maximum number of neighbors [default = 100].
## @end table
##
## @strong{Switch}
##
## @table @var
## @item verbose
## Display information about current mass during execution.
## @end table
##
## @strong{Output}
##
## The output is a @var{maxdim} - @var{mindim} + 1 x 1 struct array with the
## following fields:
## @table @var
## @item dim
## The embedding dimension of the struct.
## @item c1
## A matrix with two collumns that contain the following data:
## @enumerate
## @item
## radius
## @item
## 'mass'
## @end enumerate
## @end table
##
## @seealso{demo c1, c2d, c2t}
##
## @strong{Algorithms}
##
## The algorithms for this functions have been taken from the TISEAN package.
## @end deftypefn

## Author: Piotr Held <pjheld@gmail.com>.
## This function is based on c1 of TISEAN 3.0.1 
## https://github.com/heggus/Tisean"

function output = c1 (S, varargin)

  if (nargin < 1)
    print_usage;
  endif

  if ((ismatrix (S) == false) || (isreal(S) == false) || ...
       (isreal(S) == false))
    error ('Octave:invalid-input-arg', "S must be a realmatrix");
  endif

  # Default values
  mindim     = 1;
  maxdim     = 10;
  delay      = 1;
  tmin       = 0;
  cmin       = 100;
  resolution = 2;
  seed       = 0;
  kmax       = 100;

  #### Parse the input
  p = inputParser ();
  p.FunctionName = "c1";

  isPositiveIntScalar    = @(x) isreal(x) && isscalar (x) && ...
                             (x > 0) && (x-round(x) == 0);
  isNonNegativeIntScalar = @(x) isPositiveIntScalar (x) || (x == 0);
  isNonNegativeScalar       = @(x) isreal(x) && isscalar (x) && (x >=0);

  p.addParamValue ("mindim", mindim, isPositiveIntScalar);
  p.addParamValue ("maxdim", maxdim, isPositiveIntScalar);
  p.addParamValue ("d", delay, isPositiveIntScalar);
  p.addParamValue ("t", tmin, isNonNegativeIntScalar);
  p.addParamValue ("n", cmin, isPositiveIntScalar);
  p.addParamValue ("res", resolution, isPositiveIntScalar);
  p.addParamValue ("i", seed, isNonNegativeScalar);
  p.addParamValue ("k", kmax, isPositiveIntScalar);
  p.addSwitch ("verbose");

  p.parse (varargin{:});

  # Assign input
  mindim     = p.Results.mindim;
  maxdim     = p.Results.maxdim;
  delay      = p.Results.d;
  tmin       = p.Results.t;
  cmin       = p.Results.n; 
  resolution = p.Results.res;
  seed       = p.Results.i;
  kmax       = p.Results.k;
  verbose    = p.Results.verbose;

  if (mindim > maxdim)
    warning ("Octave:tisean", ["Parameter 'mindim' is greater than ", ...
                               "'maxdim', setting 'mindim' = 'maxdim'"]);
    mindim = maxdim;
  endif

  # Correct S to always have more rows than columns
  trnspsd = false;
  if (rows (S) < columns (S))
    S = S.';
    trnspsd = true;
  endif

  output = __c1__ (S, mindim, maxdim, delay, tmin, cmin, resolution, seed,
                   kmax, verbose);

endfunction

%!demo
%! res   = c1 (henon (5000)(:,1), 'd', 1, 'maxdim', 6, 't',50, 'n', 500);
%! slope = c2d (res, 2);
%!
%! do_plot_c1  = @(x) semilogx (x{1}(:,1),x{1}(:,2),'g');
%! hold on
%! arrayfun (do_plot_c1, {slope.d});
%! plot ([5e-4 1],[1.2 1.2])
%! hold off
%! axis tight
%! ylim ([0 3]);
%! xlabel ("Epsilon")
%! ylabel ("Local slopes");
%! title ("Information dimension")
%!###############################################################


%% testing if it works with default parameters
%!test
%% res_c1 was generated by TISEAN 3.0.1
%! res_c1 =  [0.00204866193 0.000562021392;0.00458388403 0.00152773259;0.00732116727 0.00251880521;0.0114847319 0.00351527636;0.0178178754 0.00551304966;0.0229953099 0.00751305372;0.0337692834 0.0115151331;0.0432167873 0.0155181978;0.070036374 0.0225279164;0.0809115991 0.0315354168;0.105735436 0.045548249;0.137048692 0.0635655001;0.198512435 0.0905919373;0.249011219 0.127565667;0.336370319 0.180583045;0.417932093 0.255131334;0.533079803 0.361822665;0.760820627 0.510262668;1.17550445 0.726286411;0.00397582119 0.000562021392;0.00887203496 0.00152773259;0.0129663227 0.00251880521;0.0233632866 0.00451370422;0.0256882776 0.00551304966;0.0377443098 0.00851340499;0.0444159135 0.0115151331;0.0625304207 0.0165190343;0.0792045668 0.0225279164;0.112165064 0.0325363018;0.142160922 0.045548249;0.183529988 0.0645664856;0.247998312 0.0905919373;0.365789354 0.128554597;0.479705334 0.181571603;0.648174882 0.25644654;0.828185916 0.361822665;1.0652355 0.512893081;1.51780188 0.726286411];
%! clear __c1__
%! res = c1 (henon (1000), 'maxdim', 2);
%! res_mat = cell2mat({res.c1}.');
%% row 23 and 25 are excluded because TISEAN data was calculated using floats
%% this program uses doubles
%! good_idx = [1:22,24,26:38];
%! assert (res_mat(good_idx,:), res_c1(good_idx,:),-1e-5);
%% bad_idx are used as the idx of those that were further apart than the rest
%! bad_idx = setdiff (1:length(res_c1),good_idx);
%! assert (res_mat(bad_idx,:), res_c1(bad_idx,:),6e-3);

%% testing if works with other-than-default parameters
%!test
%! res_c1 = [0.0343293324 0.000628733949;0.0685995296 0.00170907611;0.104914345 0.00281779026;0.147767007 0.00393254356;0.187380955 0.00616745465;0.242883027 0.00840486214;0.320845127 0.0117625576;0.424331248 0.0162406135;0.5311203 0.0229629427;0.638983071 0.0319196843;0.77487731 0.0453561395;0.95007056 0.0643920898;1.13252032 0.0912670717;1.33960843 0.129390419;1.51084828 0.182906702;1.65632439 0.259117812;1.78787661 0.365813404;1.93386149 0.518235624;2.13333058 0.731626809;0.0578132086 0.000630145252;0.106152184 0.00171291234;0.163010269 0.0028241151;0.214579925 0.00394137064;0.280628532 0.00618129829;0.353775769 0.00842372701;0.448207438 0.0117889596;0.582583368 0.0162770674;0.693925321 0.0230144858;0.805182397 0.0319913328;0.948441863 0.0454579443;1.12319851 0.0645366237;1.28063464 0.0914719254;1.44319057 0.129558906;1.57120717 0.183243573;1.71812892 0.259117812;1.83539987 0.367163211;1.98069465 0.518235624;2.16835737 0.737046182;0.0653617978 0.000630145252;0.120350979 0.00171291234;0.182360902 0.0028241151;0.22783263 0.00394137064;0.300161123 0.00618129829;0.384833038 0.00842372701;0.497192621 0.0117889596;0.616096795 0.0162770674;0.750326335 0.0230144858;0.908238411 0.0331135131;1.03522205 0.0465802066;1.23226273 0.0656589493;1.37276983 0.0925942659;1.53525198 0.130750626;1.65205204 0.184261546;1.77773058 0.260474414;1.88386154 0.368523091;2.01883292 0.520948827;2.19400668 0.737046182];
%! clear __c1__
%! res = c1 (henon (1000), 'mindim', 8, 'd',2,'i',0.5,'t',50,'n',500);
%% row 1, 2, 22 are excluded because TISEAN data was calculated using floats
%% this program uses doubles
%! good_idx = [3:21,23:57];
%! assert (cell2mat({res.c1}.')(good_idx,:), res_c1(good_idx,:), 1e-5);
%% bad_idx are used as the idx of those that were further apart than the rest
%! bad_idx = setdiff (1:length(res_c1),good_idx);
%! assert (cell2mat({res.c1}.')(bad_idx,:), res_c1(bad_idx,:),-3e-3);

%% Test input validation
%% Promote warnings to error to not execute program
%!error <greater> warning("error", "Octave:tisean"); c1 ([1 2 3], 'mindim', 3, 'maxdim', 2);