/usr/share/octave/packages/tisean-0.2.3/d2.m is in octave-tisean 0.2.3-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 | ## Copyright (C) 1996-2015 Piotr Held
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or
## modify it under the terms of the GNU General Public
## License as published by the Free Software Foundation;
## either version 3 of the License, or (at your option) any
## later version.
##
## Octave is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied
## warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
## PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public
## License along with Octave; see the file COPYING. If not,
## see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn{Function File} {[@var{values}, @var{pars}] =} d2 (@var{S})
## @deftypefnx{Function File} {[@var{values}, @var{pars}] =} d2 (@var{S}, @var{paramName}, @var{paramValue}, @dots{})
##
## This program estimates the correlation sum, the correlation dimension and
## the correlation entropy of a given, possibly multivariate, data set. It uses
## the box assisted search algorithm and is quite fast as long as one is not
## interested in large length scales. All length scales are computed
## simultaneously and the current center and epsilon are written every 2 min
## (real time, not cpu time) or every set number of center value increases.
## It is possible to set a maximum number of pairs. If this number is
## reached for a given length scale, the length scale will no longer be treated
## for the rest of the estimate.
##
## @strong{Input}
##
## @table @var
## @item S
## This function always assumes that each time series is along the longer
## dimension of matrix @var{S}. It also assumes that every dimension
## (counting along the shorter dimension) of @var{S} is considered a
## component of the time series.
## @end table
##
## @strong{Parameters}
##
## @table @var
## @item m
## The maximum embedding dimension [default = 10].
## @item d
## The delay used [default = 1].
## @item t
## Theiler window [default = 0].
## @item rlow
## Minimum length scale [default = 1e-3].
## @item rhigh
## Maximum length scale [default = 1].
## @item eps_no
## Number of length scale values [default = 100].
## @item n
## Maximum number of pairs to be used (value 0 means all possible pairs)
## [default = 1000].
## @item p
## This parameter determines after how many iterations (center points)
## should the program pause and write out how many center points have been
## treated so far and the current epsilon. If @var{plot_corr} or
## @var{plot_slopes} or @var{plot_entrop} is set then during the pause a plot
## of the current state of @var{c2}, @var{d2} or @var{h2} (respectively)
## is produced. Regardless of the value of this parameter the program will
## pause every two minutes [default = only pause every 2 minutes].
## @end table
##
## @strong{Switches}
##
## @table @var
## @item normalized
## When this switch is set the program uses data normalized to [0,1] for all
## components.
## @item plot_corr
## If this switch is set then whenever the execution is paused (the frequency
## can be set with parameter @var{p}) the most recent correlation sums are
## plotted. The color used for them is blue.
## @item plot_slopes
## Same as @var{plot_corr} except the plotted values are the local slopes.
## They are plotted in red.
## @item plot_entrop
## Same as @var{plot_corr} except the correlation entropies are plotted.
## They are plotted in green.
## @end table
##
## @strong{Output}
##
## @table @var
## @item values
## This is a struct array that contains the following fields:
## @itemize @bullet
## @item
## dim - the dimension of the data
## @item
## c2 - the first column is the epsilon and the second the correlation sums for
## a particular embedding dimension
## @item
## d2 - the first column is the epsilon and the second the local slopes of
## the logarithm of the corrlation sum
## @item
## h2 - the first column is the epsilon and the second the correlation
## entropies
## @end itemize
## @item pars
## This is a struct. It contains the following fields:
## @itemize @bullet
## @item
## treated - the number of center points treated
## @item
## eps - the maximum epsilon used
## @end itemize
## @end table
##
## @seealso{demo d2, av_d2, c2t, c2g}
##
## @strong{Algorithms}
##
## The algorithms for this functions have been taken from the TISEAN package.
## @end deftypefn
## Author: Piotr Held <pjheld@gmail.com>.
## This function is based on d2 of TISEAN 3.0.1
## https://github.com/heggus/Tisean"
function [values, pars] = d2 (S, varargin)
if (nargin < 1 || nargout > 2)
print_usage;
endif
if ((ismatrix (S) == false) || (isreal(S) == false) || ...
(isreal(S) == false))
error ('Octave:invalid-input-arg', "S must be a realmatrix");
endif
# Default values
embed = 10;
delay = 1;
mindist = 0;
epsmin = 1e-3;
epsmax = 1.0;
howoften = 100;
maxfound = 1000;
iterator_pause = length (S);
#### Parse the input
p = inputParser ();
p.FunctionName = "d2";
isPositiveIntScalar = @(x) isreal(x) && isscalar (x) && ...
(x > 0) && (x-round(x) == 0);
isNonNegativeIntScalar = @(x) isPositiveIntScalar (x) || (x == 0);
isPositiveScalar = @(x) isreal(x) && isscalar (x) && (x > 0);
p.addParamValue ("m", embed, isPositiveIntScalar);
p.addParamValue ("d", delay, isPositiveIntScalar);
p.addParamValue ("t", mindist, isNonNegativeIntScalar);
p.addParamValue ("rlow", epsmin, isPositiveScalar);
p.addParamValue ("rhigh", epsmax, isPositiveScalar);
p.addParamValue ("eps_no", howoften, isPositiveIntScalar);
p.addParamValue ("n", maxfound, isNonNegativeIntScalar);
p.addParamValue ("p", iterator_pause, isPositiveIntScalar);
p.addSwitch ("normalized");
p.addSwitch ("plot_corr");
p.addSwitch ("plot_slopes");
p.addSwitch ("plot_entrop");
p.parse (varargin{:});
# Assign inputs
embed = p.Results.m;
delay = p.Results.d;
mindist = p.Results.t;
epsmin = p.Results.rlow;
eps_min_set = !ismember ("rlow", p.UsingDefaults);
epsmax = p.Results.rhigh;
eps_max_set = !ismember ("rhigh", p.UsingDefaults);
howoften = p.Results.eps_no;
maxfound = p.Results.n;
rescale_set = p.Results.normalized;
iterator_pause = p.Results.p;
plot_corr = p.Results.plot_corr;
plot_slopes = p.Results.plot_slopes;
plot_entrop = p.Results.plot_entrop;
# Input validation
# Check if the delay and embedding dimensions are too large
if ((length (S)-(embed-1)*delay) <= 0)
error ("Octave:invalid-input-arg","Embedding dimension and delay are too \
large, the delay vector would be longer than the whole series.");
endif
# Check if rlow is smaller than rhigh
if (epsmin >= epsmax)
warning ("Octave:tisean", "'rlow' is greater or equal to 'rhigh'");
endif
# Correct S to always have more rows than columns
trnspsd = false;
if (rows (S) < columns (S))
S = S.';
trnspsd = true;
endif
[values, vars] = __d2__ (S, embed, delay, mindist, epsmin, eps_min_set,
epsmax, eps_max_set, howoften, maxfound,
rescale_set,iterator_pause);
# Pause calculations and if flags are set, plot current state of the output.
calc_paused = false;
while (isfield (vars, "counter") ...
&& vars.counter < (length (S) - (embed-1)*delay))
calc_paused = true;
printf ("\n");
treated = vars.treated
epsilon = vars.eps
fflush (stdout);
figure_no = 1;
if (plot_corr)
h = figure (figure_no);
figure_no += 1;
do_plot_corr = @(x) loglog (x{1}(:,1),x{1}(:,2),'b');
clf (h)
hold on
arrayfun (do_plot_corr, {values.c2});
hold off
xlabel ("Epsilon")
ylabel ("Correlation sums")
drawnow ()
endif
if (plot_slopes)
h = figure (figure_no);
figure_no += 1;
do_plot_slope = @(x) semilogx (x{1}(:,1),x{1}(:,2),'r');
clf (h)
hold on
arrayfun (do_plot_slope, {values.d2});
hold off
xlabel ("Epsilon")
ylabel ("Local slopes")
drawnow ()
endif
if (plot_entrop)
h =figure (figure_no);
figure_no += 1;
do_plot_entrop = @(x) semilogx (x{1}(:,1),x{1}(:,2),'g');
clf (h)
hold on
arrayfun (do_plot_entrop, {values.h2});
hold off
xlabel ("Epsilon")
ylabel ("Correlation entropies");
drawnow ()
endif
# Continue on with computation
[values, vars] = __d2__ (S, embed, delay, mindist, vars.EPSMIN,
eps_min_set, vars.EPSMAX, eps_max_set, howoften,
maxfound, rescale_set, iterator_pause,
vars.counter, vars.found, vars.norm, vars.boxc1,
vars.box, vars.list, vars.listc1, vars.imin,
vars.EPSMAX1);
endwhile
if (calc_paused)
printf ("\n");
fflush (stdout);
endif
pars = vars;
endfunction
%!demo
%! vals = d2 (henon (1000), 'd', 1, 'm', 5, 't',50);
%!
%! subplot (2,3,1)
%! do_plot_corr = @(x) loglog (x{1}(:,1),x{1}(:,2),'b');
%! hold on
%! arrayfun (do_plot_corr, {vals.c2});
%! hold off
%! axis tight
%! xlabel ("Epsilon")
%! ylabel ("Correlation sums")
%! title ("c2");
%!
%! subplot (2,3,4)
%! do_plot_entrop = @(x) semilogx (x{1}(:,1),x{1}(:,2),'g');
%! hold on
%! arrayfun (do_plot_entrop, {vals.h2});
%! hold off
%! axis tight
%! xlabel ("Epsilon")
%! ylabel ("Correlation entropies");
%! title ("h2")
%!
%! subplot (2,3,[2 3 5 6])
%! do_plot_slope = @(x) semilogx (x{1}(:,1),x{1}(:,2),'r');
%! hold on
%! arrayfun (do_plot_slope, {vals.d2});
%! hold off
%! axis tight
%! xlabel ("Epsilon")
%! ylabel ("Local slopes")
%! title ("d2");
%!###############################################################
%!shared res, pars
%! [res, pars] = d2 (henon (100)(:,1),'m',2,'eps_no',20,'t',50);
%!test
%! res_d2_stat = [98 1.777433e+00];
%! assert ([pars.treated pars.eps], res_d2_stat, -1e-6);
%% test d2 field of output
%!test
%! res_d2_d2 = [1.777433 0.30648;1.235659 0.5606802;0.859021 0.7008824;0.5971852 0.8064865;0.4151589 0.9044852;0.2886154 0.9689651;0.2006434 0.8540874;0.1394858 0.8112826;0.09696954 0.8935407;0.06741253 0.9143867;0.0468647 0.856615;0.03258 0.8627251;0.02264938 1.503286;0.01574569 1.447036;0.01094629 0.7216412;0.007609782 0.6137634;0.005290265 1.29276;0.003677754 1.405042;1.777433 0.645521;1.235659 1.002253;0.859021 1.056272;0.5971852 1.026064;0.4151589 1.402018;0.2886154 1.565816;0.2006434 0.6950658;0.1394858 1.238292;0.09696954 0.9580286;0.06741253 1.75781;0.0468647 1.043798;0.03258 2.628165;0.02264938 1.405042;0.01574569 1.115245];
%! assert (cell2mat({res.d2}.'), res_d2_d2, -1e-6);
%% test h2 field of output
%!test
%! res_d2_h2 = [2.556748 -0;1.777433 0.1114257;1.235659 0.31527;0.859021 0.5700871;0.5971852 0.8632982;0.4151589 1.192138;0.2886154 1.544421;0.2006434 1.854938;0.1394858 2.149893;0.09696954 2.474754;0.06741253 2.807194;0.0468647 3.11863;0.03258 3.432288;0.02264938 3.978832;0.01574569 4.504925;0.01094629 4.767289;0.007609782 4.990433;0.005290265 5.460436;0.003677754 5.971262;2.556748 0;1.777433 0.1232638;1.235659 0.2838046;0.859021 0.4130123;0.5971852 0.4928431;0.4151589 0.6737291;0.2886154 0.890724;0.2006434 0.8329091;0.1394858 0.9881553;0.09696954 1.011601;0.06741253 1.318241;0.0468647 1.386294;0.03258 2.028148;0.02264938 1.99243;0.01574569 1.871802];
%! assert (cell2mat({res.h2}.'), res_d2_h2, -1e-6);
%% test c2 field of output
%!test
%! res_d2_c2 = [2.556748 1;1.777433 0.8945578;1.235659 0.7295918;0.859021 0.5654762;0.5971852 0.4217687;0.4151589 0.3035714;0.2886154 0.2134354;0.2006434 0.1564626;0.1394858 0.1164966;0.09696954 0.08418367;0.06741253 0.06037415;0.0468647 0.04421769;0.03258 0.03231293;0.02264938 0.01870748;0.01574569 0.01105442;0.01094629 0.008503401;0.007609782 0.006802721;0.005290265 0.004251701;0.003677754 0.00255102;0.002556748 0;2.556748 1;1.777433 0.7908163;1.235659 0.5493197;0.859021 0.3741497;0.5971852 0.2576531;0.4151589 0.1547619;0.2886154 0.08758503;0.2006434 0.06802721;0.1394858 0.04336735;0.09696954 0.03061224;0.06741253 0.01615646;0.0468647 0.01105442;0.03258 0.004251701;0.02264938 0.00255102;0.01574569 0.00170068;0.01094629 0;0.007609782 0;0.005290265 0;0.003677754 0;0.002556748 0];
%! assert (cell2mat({res.c2}.'), res_d2_c2, -1e-6);
%% Test input validation
%!error <too large> d2 (1:5);
%% Promote warnings to error to not execute program
%!error <greater> warning("error", "Octave:tisean"); ...
%! d2 (henon (1000), 'rlow', 4, 'rhigh', 1);
|