This file is indexed.

/usr/share/octave/packages/tisean-0.2.3/ghkss.m is in octave-tisean 0.2.3-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
## Copyright (C) 1996-2015 Piotr Held
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or
## modify it under the terms of the GNU General Public
## License as published by the Free Software Foundation;
## either version 3 of the License, or (at your option) any
## later version.
##
## Octave is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied
## warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
## PURPOSE.  See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public
## License along with Octave; see the file COPYING.  If not,
## see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn{Function File} {@var{output} =} ghkss (@var{S})
## @deftypefnx{Function File} {@var{output} =} ghkss (@var{S}, @var{paramName}, @var{paramValue}, @dots{})
##
## Multivariate noise reduction using the GHKSS algorithm.
##
## @strong{Input}
##
## @table @var
## @item S
## This function always assumes that each time series is along the longer 
## dimension of matrix @var{S}. It also assumes that every dimension 
## (counting along the shorter dimension) of @var{S} is considered a 
## component of the time series.
## @end table
##
## @strong {Parameters}
##
## @table @var
## @item m
## The embedding dimension used. It is synonymous to the second part 
## of flag '-m' from TISEAN. The first part of the TISEAN flag is omitted
## as all of the available components of @var{S} are analyzed.
## [default = 1].
## @item d
## The delay for the embedding [default = 1].
## @item q
## Dimension of the manifold to project to [default = 2].
## @item k
## Minimal number of neighbours [default = 50].
## @item r
## Minimal size of neighbourhood [default = 1/1000].
## @item i
## Number of iterations [default = 1].
## @end table
##
## @strong {Switches}
##
## @table @var
## @item euclidean
## When this switch is selected the function will use the euclidean metric 
## instead of the tricky one.
## @item verbose
## If this switch is selected the function will give progress reports 
## along the way. Those include the average correction, trend and how many
## points were corrected for which epsilon.
## @end table
##
## @strong {Output}
##
## The @var{output} contains the cleaned time series. The output is of the
## same size as the input.
##
## @strong{Algorithms}
##
## The algorithms for this functions have been taken from the TISEAN package.
## @end deftypefn

## Author: Piotr Held <pjheld@gmail.com>.
## This function is based on ghkss of TISEAN 3.0.1
## https://github.com/heggus/Tisean"

function output = ghkss (S, varargin)

  if (nargin < 1)
    print_usage;
  endif

  if ((!ismatrix (S)) || (!isreal(S)))
    error ('Octave:invalid-input-arg', "S is not a realmatrix");
  endif

  # Define default values
  embed      = 5;
  comp       = 1;
  delay      = 1;
  qdim       = 2;
  minn       = 50;
  mineps     = 1./1000.;
  eps_set    = 0;
  iterations = 1;
  euclidean  = 0;
  verbose    = 0;

  #### Parse the input
  p = inputParser ();
  p.FunctionName = "ghkss";

  isPositiveIntScalar = @(x) isreal(x) && isscalar (x) && ...
                             (x > 0) && (x-round(x) == 0);
  isPositiveScalar     = @(x) isreal(x) && isscalar (x) && (x > 0);

  p.addParamValue ("m", embed, isPositiveIntScalar);
  p.addParamValue ("d", delay, isPositiveIntScalar);
  p.addParamValue ("q", qdim, isPositiveIntScalar);
  p.addParamValue ("k", minn, isPositiveIntScalar);
  p.addParamValue ("r", mineps, isPositiveScalar);
  p.addParamValue ("i", iterations, isPositiveIntScalar);
  p.addSwitch ("euclidean");
  p.addSwitch ("verbose");

  p.parse (varargin{:});

  # Assign inputs
  embed      = p.Results.m;
  delay      = p.Results.d;
  qdim       = p.Results.q;
  minn       = p.Results.k;
  mineps     = p.Results.r;
  eps_set    = !ismember ('r', p.UsingDefaults);
  iterations = p.Results.i;
  euclidean  = p.Results.euclidean;
  verbose    = p.Results.verbose;

  # Correct S to always have more rows than columns
  trnspsd = false;
  if (rows (S) < columns (S))
    S = S.';
    trnspsd = true;
  endif

  # Use all columns as separate components (alter 'm' from original)
  if (columns (S) > 1)
    comp   = columns (S);
  endif

  # Input checking from original main()
  if (rows (S) < minn) 
    error ('Octave::invalid-input-arg', ...
           "With %lu data you will never find %u neighbors.",rows(S),minn);
  endif

  output = __ghkss__ (S, embed, comp, delay, qdim, minn, mineps, eps_set, ...
                      iterations, euclidean, verbose);

  if (trnspsd)
  output = output.';
  endif

endfunction

%!demo
%! hen    = henon (10000);
%! # The following line is equvalent to 'addnoise -v0.02 hen' from TISEAN
%! hen    = hen + std (hen) * 0.02 .* (-6 + sum (rand ([size(hen), 12]), 3));
%! hendel = delay (hen(:,1));
%! hengk = ghkss (hen(:,1),'m',7,'q',2,'r',0.05,'k',20,'i',2);
%! hengk = delay (hengk);
%!
%! subplot (2,3,1)
%! plot (hendel(:,1), hendel(:,2), 'b.','markersize', 3);
%! title ("Noisy data");
%! pbaspect ([1 1 1]);
%! axis tight
%! axis off
%!
%! subplot (2,3,4)
%! plot (hengk(:,1), hengk(:,2),'r.','markersize', 3);
%! title ("Clean data");
%! pbaspect ([1 1 1]);
%! axis tight
%! axis off
%!
%! subplot (2,3,[2 3 5 6])
%! plot (hendel(:,1), hendel(:,2), 'b.','markersize', 3,...
%!       hengk(:,1), hengk(:,2),'r.','markersize', 3);
%! legend ("Noisy", "Clean");
%! title ("Superimposed data");
%! axis tight

%!###############################################################

%!fail ("ghkss (1:10,'k',11)");
%!fail ("ghkss (rand(50,1))");
%!xtest ("ghkss (rand(50))");

%!test
%! "res was created running 'ghkss -k5' from TISEAN on 'in'";
%! in = [1.103556129288296; 1.242752956263521; 1.083069768858902; 1.075266648105394; 1.400623241697165; 1.037690499824349; 1.461415094264967; 1.295560284337681; 1.116149954336578; 1.323253666984052];
%! res = [1.103556e+00; 1.237084e+00; 1.192734e+00; 1.150288e+00; 1.360435e+00; 1.048788e+00; 1.337826e+00; 1.228952e+00; 1.156421e+00; 1.323254e+00];
%! cln = ghkss (in, 'k', 5);
%! assert (cln, res, 1e-6);