/usr/share/octave/packages/tisean-0.2.3/ikeda.m is in octave-tisean 0.2.3-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 | ## Copyright (C) 1996-2015 Piotr Held
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or
## modify it under the terms of the GNU General Public
## License as published by the Free Software Foundation;
## either version 3 of the License, or (at your option) any
## later version.
##
## Octave is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied
## warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
## PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public
## License along with Octave; see the file COPYING. If not,
## see <http://www.gnu.org/licenses/>.
## Author: Piotr Held <pjheld@gmail.com>.
## This function is based on henon of TISEAN 3.0.1 https://github.com/heggus/Tisean"
## -*- texinfo -*-
## @deftypefn{Function File} {@var{output_array} =} ikeda (@var{L}, @dots{})
## @deftypefnx{Function File} {@var{output_array} =} ikeda (@var{L}, @var{paramName}, @var{paramValue}, @dots{})
##
## Generate Ikeda map
##
## @iftex
## @tex
## $$ z_{n+1} = 1 + c * z_{n} * exp (a*i - {{b*i} \over {1+|z_{n}|}})$$
## @end tex
## @end iftex
## @ifnottex
## @example
## b*i
## z(n+1) = 1 + c * z(n) * exp (a*i - ---------)
## 1+|z(n)|
## @end example
## @end ifnottex
##
## @strong{Input}
##
## @table @var
## @item L
## The number of points (x,y), must be integer. Required value.
## @end table
##
## @strong{Parameters}
##
## @table @var
## @item a
## Defines parameter 'a' (default=0.4)
## @item b
## Defines parameter 'b' (default=6.0)
## @item c
## Defines parameter 'c' (default=0.9)
## @item R
## Initial real value of 'z' (default=0.68587)
## @item I
## Initial imaginary value of 'z' (defaul=0.65876)
## @item ntrans
## Defines number of transient points (default=10000),
## must be positive integer scalar
## @end table
##
## @strong{Output}
##
## @var{output} is of length @var{L}. The first columns are the real values
## of the Ikeda Map and the second are the imaginary values of the Ikeda map.
## This is done to be work the same way that 'ikeda' in TISEAN works.
##
## @strong{Usage example}
##
## @code{out = ikeda(1000, "a", 1.25)}
##
## After this command @var{out} will be a 1000x2 matrix with Henon map
## points as rows. It will generate 1000 points.
##
## @strong{Algorithm}
## On basis of TISEAN package ikeda
## @end deftypefn
## Author: Piotr Held <pjheld@gmail.com>.
## This function is based on ikeda of TISEAN 3.0.1
## https://github.com/heggus/Tisean"
function output = ikeda (L, varargin)
% Define default parameters.
a = 0.4;
b = 6.0;
c = 0.9;
x0 = 0.68587;
y0 = 0.65876;
ntransient = 10000;
isPositiveInteger = @(x) isreal(x) && isscalar (x) && (x > 0) && (x-round(x) == 0);
if (nargin < 1)
print_usage();
elseif (isPositiveInteger (L) != true)
error ('Octave:invalid-input-arg', "L must be a positive integer");
endif
#### Parse the input
p = inputParser ();
p.FunctionName = "ikeda";
isRealScalar = @(x) isreal (x) && isscalar (x);
p.addParamValue ("A",a,isRealScalar);
p.addParamValue ("B",b,isRealScalar);
p.addParamValue ("C",c,isRealScalar);
p.addParamValue ("R",x0,isRealScalar);
p.addParamValue ("I",y0,isRealScalar);
isNonNegative = @(x) isreal(x) && isscalar (x) && (x >= 0) && (x-round(x) == 0);
p.addParamValue ("ntrans",ntransient,isNonNegative);
p.parse (varargin{:});
# Asign input
nmax = L;
a = p.Results.A;
b = p.Results.B;
c = p.Results.C;
x0 = p.Results.R;
y0 = p.Results.I;
ntransient = p.Results.ntrans;
% Computing output
output = __ikeda__ (nmax, a, b, c, x0, y0, ntransient);
endfunction
%!test
%! ikd = [0.28571947432035805 0.64340009417266342;0.50841625820931591 -0.39972597757561129;0.87547944209544659 0.56858743316662752;0.70057389172681206 -0.89053147224601548;-1.9710645882970557E-002 -1.0429004993745194E-002;0.99222205960974108 -1.8501225510088638E-002;0.21620211688366087 -0.42823693940249830;1.3295528700280905 0.27892721893609196;1.0842998438472966 -1.2197367054961652;0.28153619668028618 -1.2810993040439602];
%! res = ikeda (10);
%! assert (res, ikd, 1e-16);
|