This file is indexed.

/usr/share/octave/packages/tisean-0.2.3/ikeda.m is in octave-tisean 0.2.3-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
## Copyright (C) 1996-2015 Piotr Held
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or
## modify it under the terms of the GNU General Public
## License as published by the Free Software Foundation;
## either version 3 of the License, or (at your option) any
## later version.
##
## Octave is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied
## warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
## PURPOSE.  See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public
## License along with Octave; see the file COPYING.  If not,
## see <http://www.gnu.org/licenses/>.

## Author: Piotr Held <pjheld@gmail.com>.
## This function is based on henon of TISEAN 3.0.1 https://github.com/heggus/Tisean"

## -*- texinfo -*-
## @deftypefn{Function File} {@var{output_array} =} ikeda (@var{L}, @dots{})
## @deftypefnx{Function File} {@var{output_array} =} ikeda (@var{L}, @var{paramName}, @var{paramValue}, @dots{})
##
## Generate Ikeda map
## 
## @iftex
## @tex
## $$ z_{n+1} = 1 + c * z_{n} * exp (a*i - {{b*i} \over {1+|z_{n}|}})$$
## @end tex
## @end iftex
## @ifnottex
## @example
##                                       b*i
## z(n+1) = 1 + c * z(n) * exp (a*i - ---------)
##                                    1+|z(n)|
## @end example
## @end ifnottex
##
## @strong{Input}
## 
## @table @var
## @item L
## The number of points (x,y), must be integer. Required value.
## @end table
##
## @strong{Parameters}
## 
## @table @var
## @item a 
## Defines parameter 'a' (default=0.4)
## @item b
## Defines parameter 'b' (default=6.0)
## @item c
## Defines parameter 'c' (default=0.9) 
## @item R
## Initial real value of 'z' (default=0.68587)
## @item I
## Initial imaginary value of 'z' (defaul=0.65876)
## @item ntrans
## Defines number of transient points (default=10000),
## must be positive integer scalar
## @end table
##
## @strong{Output}
##
## @var{output} is of length @var{L}. The first columns are the real values
## of the Ikeda Map and the second are the imaginary values of the Ikeda map.
## This is done to be work the same way that 'ikeda' in TISEAN works.
##
## @strong{Usage example}
##
## @code{out = ikeda(1000, "a", 1.25)}
## 
## After this command @var{out} will be a 1000x2 matrix with Henon map
## points as rows. It will generate 1000 points.
##
## @strong{Algorithm}
## On basis of TISEAN package ikeda
## @end deftypefn

## Author: Piotr Held <pjheld@gmail.com>.
## This function is based on ikeda of TISEAN 3.0.1
## https://github.com/heggus/Tisean"

function output = ikeda (L, varargin)

% Define default parameters.
  a          = 0.4;
  b          = 6.0;
  c          = 0.9;
  x0         = 0.68587;
  y0         = 0.65876;  
  ntransient = 10000;

  isPositiveInteger = @(x) isreal(x) && isscalar (x) && (x > 0) && (x-round(x) == 0);

  if (nargin < 1)
    print_usage();
  elseif (isPositiveInteger (L) != true)
    error ('Octave:invalid-input-arg', "L must be a positive integer");
  endif

  #### Parse the input    
  p = inputParser ();
  p.FunctionName = "ikeda";  
  
  isRealScalar = @(x) isreal (x) && isscalar (x);
  p.addParamValue ("A",a,isRealScalar);
  p.addParamValue ("B",b,isRealScalar);
  p.addParamValue ("C",c,isRealScalar);
  p.addParamValue ("R",x0,isRealScalar);
  p.addParamValue ("I",y0,isRealScalar);

  isNonNegative = @(x) isreal(x) && isscalar (x) && (x >= 0) && (x-round(x) == 0);
  
  p.addParamValue ("ntrans",ntransient,isNonNegative);
  
  p.parse (varargin{:});

  # Asign input
  nmax = L;

  a          = p.Results.A;
  b          = p.Results.B;
  c          = p.Results.C;
  x0         = p.Results.R;
  y0         = p.Results.I;
  ntransient = p.Results.ntrans;

% Computing output  
  output = __ikeda__ (nmax, a, b, c, x0, y0, ntransient);

endfunction

%!test
%! ikd = [0.28571947432035805 0.64340009417266342;0.50841625820931591 -0.39972597757561129;0.87547944209544659 0.56858743316662752;0.70057389172681206 -0.89053147224601548;-1.9710645882970557E-002 -1.0429004993745194E-002;0.99222205960974108 -1.8501225510088638E-002;0.21620211688366087 -0.42823693940249830;1.3295528700280905 0.27892721893609196;1.0842998438472966 -1.2197367054961652;0.28153619668028618 -1.2810993040439602];
%! res = ikeda (10);
%! assert (res, ikd, 1e-16);