/usr/share/octave/packages/tisean-0.2.3/pca.m is in octave-tisean 0.2.3-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 | ## Copyright (C) 1996-2015 Piotr Held
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or
## modify it under the terms of the GNU General Public
## License as published by the Free Software Foundation;
## either version 3 of the License, or (at your option) any
## later version.
##
## Octave is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied
## warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
## PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public
## License along with Octave; see the file COPYING. If not,
## see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn{Function File} {@var{eigval} =} pca (@var{S})
## @deftypefnx{Function File} {[@var{eigval}, @var{eigvec}] =} pca (@var{S})
## @deftypefnx{Function File} {[@var{eigval}, @var{eigvec}, @var{ts}] =} pca (@var{S})
## @deftypefnx{Function File} {[@dots{}] =} pca (@var{S}, @var{paramName}, @var{paramValue}, @dots{})
##
## Performs a global principal component analysis (PCA). It gives the
## eigenvalues of the covariance matrix and depending on the flag @var{w}
## settings the eigenvectors, projections of the input time series.
##
## @strong{Input}
##
## @table @var
## @item S
## This function always assumes that each time series is along the longer
## dimension of matrix @var{S}. It also assumes that every dimension
## (counting along the shorter dimension) of @var{S} is considered a
## component of the time series.
## @end table
##
## @strong{Parameters}
##
## @table @var
## @item m
## Defines embedding dimension. Since all of the data in @var{S} is analysed
## there is no need for setting the number of columns to be read (as is the
## case in TISEAN 'pca') [default = 1].
## @item d
## Delay must be scalar integer [default = 1].
## @item q
## Determines the properties of @var{TS}. When parameter @var{w} is set then
## @var{q} determines the projection dimension. Otherwise it determines the
## number of components written to output [default = full dimension/all
## components].
## @end table
##
## @strong {Switch}
##
## @table @var
## @item w
## If @var{w} is set then @var{TS} is a projection of the time series onto the
## first @var{q} eigenvectors (global noise reduction).
## If @var{w} is not set then @var{TS} is a transformation of the time
## series onto the eigenvector basis. The number of projection
## dimension/components printed is determined by parameter @var{q}.
## @end table
##
## @strong{Output}
##
## @table @var
## @item eigval
## The calculated eigenvalues.
## @item eigvec
## The eigenvectors. The vectors are alligned with the longer dimension of
## @var{S}.
## @item ts
## If @var{w} is set then this variable holds the projected time series
## onto the first @var{q} eigenvectors. If @var{w} is not set then @var{TS} is
## the transformed time series onto the eigenvector basis (number of
## components == parameter @var{q}).
## @end table
##
## @strong{Algorithms}
##
## The algorithms for this functions have been taken from the TISEAN package.
## @end deftypefn
## Author: Piotr Held <pjheld@gmail.com>.
## This function is based on pca of TISEAN 3.0.1
## https://github.com/heggus/Tisean"
function [eigval, eigvec, TS] = pca (S, varargin)
if (nargin < 1)
print_usage;
endif
if ((ismatrix (S) == false) || (isreal(S) == false))
error ('Octave:invalid-input-arg', "S must be a realmatrix");
endif
# Define default values for pca variables
dim = 2;
dimset = 0;
emb = 1;
delay = 1;
ldim = 2;
projection_set = 0;
#### Parse the input
p = inputParser ();
p.FunctionName = "pca";
isPositiveIntScalar = @(x) isreal(x) && isscalar (x) && ...
(x > 0) && (x-round(x) == 0);
p.addParamValue ("m", emb, isPositiveIntScalar);
p.addParamValue ("d", delay, isPositiveIntScalar);
p.addParamValue ("q", ldim, isPositiveIntScalar);
p.addSwitch ("w");
p.parse (varargin{:});
# Assign inputs
emb = p.Results.m;
dimset = !ismember ('m',p.UsingDefaults);
delay = p.Results.d;
ldim = p.Results.q;
projection_set = !ismember ('q',p.UsingDefaults);
w = p.Results.w;
if (w && (nargout < 3))
error ('Octave:invalid-fun-call', "Do not set flag 'w' when less than 3 output values");
endif;
# Correct S to always have more rows than columns
trnspsd = false;
if (rows (S) < columns (S))
S = S.';
trnspsd = true;
endif
if (columns (S) != dim)
dim = columns (S);
dimset = 1;
endif
# Compute output for various inputs.
switch (nargout)
case { 0, 1, 2 }
w = 1;
[eigval, eigvec] = __pca__ (S, dim, emb, delay, ldim, projection_set, w);
case 3
# The value of 'w' is set to correspond to the 'W' flag from TISEAN in determining
# the value of TS. Eigval and eigvec are equivalent to the lower values of 'W' from TISEAN
# that is '-W0' and '-W1'.
if (w)
w = 3;
else
w = 2;
endif;
[eigval, eigvec, TS] = __pca__ (S, dim, emb, delay, ldim, projection_set, w);
# Fix output to allign with input
if (trnspsd)
TS = TS.';
endif;
otherwise
error ('Octave:invalid-fun-call', "Too many output variables");
endswitch
# Fix the output to allign with the input
if (trnspsd)
eigval = eigval.';
eigvec = eigvec.';
endif
endfunction
%!test
%! a = (1:300).';
%! b = [zeros(100,1); ones(100,1); zeros(100,1)];
%! res = [0, 7.499917e+03; 1, 2.222222e-01];
%! assert (pca ([a,b]), res, -1e-6);
%!test
%! a = (1:300).';
%! b = sin (a / (2*pi));
%! res = [-1.000000e+00, -1.105892e-04; 1.105892e-04, -1.000000e+00];
%! [eval, evec] = pca ([a,b]);
%! assert (evec, res, -1e-6);
%!test
%! a = (1:10).';
%! b = [0; 0; 0; 0; 1; 1; 1; 0; 0; 0];
%! res = [-9.998261e-01, 1.864698e-02; -1.999652e+00, 3.729397e-02; -2.999478e+00, 5.594095e-02; -3.999305e+00, 7.458794e-02; -5.017778e+00, -9.065912e-01; -6.017604e+00, -8.879442e-01; -7.017430e+00, -8.692972e-01; -7.998609e+00, 1.491759e-01; -8.998435e+00, 1.678229e-01; -9.998261e+00, 1.864698e-01];
%! [eval, evec, ts] = pca ([a,b]);
%! assert (ts, res, -1e-6);
%!test
%! a = (1:10).';
%! b = [0; 0; 0; 1; 1; 0; 0; 1; 0; 0];
%! res = [1.000000e+00, -5.551115e-17; 2.000000e+00, -5.551115e-17; 3.000000e+00, -5.551115e-17; 4.000000e+00, 1.000000e+00; 5.000000e+00, 1.000000e+00; 6.000000e+00, -5.551115e-17; 7.000000e+00, -1.110223e-16; 8.000000e+00, 1.000000e+00; 9.000000e+00, -5.551115e-17; 1.000000e+01, -1.110223e-16];
%! [eval, evec, ts] = pca ([a,b], 'w');
%! assert (ts, res, -1e-6);
%!xtest (pca (rand(2,10)));
|