/usr/share/octave/packages/tisean-0.2.3/rbf.m is in octave-tisean 0.2.3-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 | ## Copyright (C) 1996-2015 Piotr Held
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or
## modify it under the terms of the GNU General Public
## License as published by the Free Software Foundation;
## either version 3 of the License, or (at your option) any
## later version.
##
## Octave is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied
## warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
## PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public
## License along with Octave; see the file COPYING. If not,
## see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn{Function File} {[@var{par}, @var{forecast}] =} rbf (@var{X})
## @deftypefnx{Function File} {[@var{par}, @var{forecast}] =} rbf (@var{X}, @var{paramName}, @var{paramValue}, @dots{})
##
## This program models the data using a radial basis function (rbf) ansatz.
## The basis functions used are gaussians, with center points chosen to be data
## from the time series. If the 'DriftOff' switch is not set, a kind of
## Coulomb force is applied to them to let them drift a bit in order to
## distribute them more uniformly. The variance of the gaussians is set to the
## average distance between the centers.
## This program either tests the ansatz by calculating the average forecast
## error of the model, or makes a i-step prediction using the -L flag,
## additionally. The ansatz made is:
##
## @iftex
## @tex
## $$ x_{n+1} = a_0 + SUM a_{i}f_{i}(x_{n})$$
## @end tex
## @end iftex
## @ifnottex
## @example
## x_n+1 = a_0 SUM a_i * f_i(x_n)
## @end example
## @end ifnottex
##
## where x_n is the nth delay vector and f_i is a gaussian centered at the ith
## center point.
##
## @strong{Input}
##
## @table @var
## @item X
## Must be realvector. The output will be alligned with the input.
## @end table
##
## @strong{Parameters}
##
## @table @var
## @item m
## The embedding dimension. Synonymous with flag '-m' from TISEAN
## [default = 2].
## @item d
## Delay used for embedding [default = 1].
## @item p
## Number of centers [default = 10].
## @item s
## Steps to forecast (for the forecast error) [default = 1].
## @item n
## Number of points for the fit. The other points are used to estimate the
## out of sample error [default = length (@var{X})].
## @item l
## Determines the length of the predicted series [default = 0].
## @end table
##
## @strong{Switch}
##
## @table @var
## @item DriftOff
## Deactivates the drift (Coulomb force), which is otherwise on.
## @end table
##
## @strong{Output}
##
## @table @var
## @item pars
## This structure contains parameters used for the fit. It has the following
## fields:
## @itemize @bullet
## @item
## centers - contains coordinates of the center points
## @item
## var - variance used for the gaussians
## @item
## coeffs - contains the coefficients (weights) of the basis functions used
## for the model
## @item
## err - err(1) is the in sample error, and err(2) is the out of sample error
## (if it exists)
## @end itemize
## @item forecast
## Contains the forecasted points. It's length is equal to the value of
## parameter @var{l}
## @end table
##
## @strong{Algorithms}
##
## The algorithms for this functions have been taken from the TISEAN package.
## @end deftypefn
## Author: Piotr Held <pjheld@gmail.com>.
## This function is based on rbf of TISEAN 3.0.1
## https://github.com/heggus/Tisean"
function [pars, forecast] = rbf (X, varargin)
# Initial input validation
if (nargin < 1 || nargout > 2)
print_usage;
endif
if ((isvector (X) == false) || (isreal(X) == false))
error ('Octave:invalid-input-arg', "X must be a realvector");
endif
# Checking if the data isn't too short
if (length (X) < 2)
error ('Octave:invalid-input-arg', "X must have more elements than 1");
endif
# Default parameters
embdim = 2;
delay = 1;
center_par = 10;
step = 1;
insample = length (X);
clength = 1000;
#### Parse the input
p = inputParser ();
p.FunctionName = "rbf";
isPositiveIntScalar = @(x) isreal(x) && isscalar (x) && ...
(x > 0) && (x-round(x) == 0);
isPositiveScalar = @(x) isreal(x) && isscalar (x) && (x > 0);
p.addParamValue ("m", embdim, isPositiveIntScalar);
p.addParamValue ("d", delay, isPositiveIntScalar);
p.addParamValue ("p", center_par, isPositiveIntScalar);
p.addParamValue ("s", step, isPositiveIntScalar);
p.addParamValue ("n", insample, isPositiveIntScalar);
p.addParamValue ("l", clength, isPositiveIntScalar);
p.addSwitch ("DriftOff");
p.parse (varargin{:});
# Assign inputs
embdim = p.Results.m;
delay = p.Results.d;
center_par = p.Results.p;
step = p.Results.s;
insample = p.Results.n;
clength = p.Results.l;
makecast = !ismember ('l',p.UsingDefaults);
setdrift = !p.Results.DriftOff;
#Input corrections from main ()
if (makecast)
if (!ismember ('s', p.UsingDefaults))
warning ('Octave:tisean', "Making forecast therefore value of parameter \
's' is now 1");
endif
step=1;
endif
if (insample > length (X))
warning ('Octave:tisean', "Parameter 'n' was too large, it has been \
reduced to: %d", length (X));
insample = length (X);
endif
if (center_par > length (X))
warning ('Octave:tisean', "Parameter 'p' was too large, it has been \
reduced to: %d", length (X));
center_par = length (X);
endif
# Correct X to always have more rows than columns
trnspsd = false;
if (rows (X) < columns (X))
X = X.';
trnspsd = true;
endif
## If not enough outputs were specified
if ((nargout < 2) && makecast)
warning ('Octave:tisean', "Only one output was specified, no place to \ return forecasted points");
makecast = false;
endif
[centers, variance, coeffs, sample_err, forecast] = ...
__rbf__ (X, embdim, delay, center_par, step, insample, clength, ...
makecast, setdrift);
if (trnspsd)
centers = centers.';
variance = variance.';
coeffs = coeffs.';
sample_err = sample_err.';
forecast = forecast.';
endif
pars = struct ("centers", centers, "var", variance, "coeffs", coeffs,...
"err", sample_err);
endfunction
%!demo
%! # sin_saw is a sinusoid multiplied by a saw function
%! idx = (1:2500).';
%! sin_saw = (5 + mod (idx, 165) ./15) .* sin (idx.* 2 * pi /32);
%!
%! forc_no = 170; #Number of forecasted points
%! [p,forecast] = rbf (sin_saw(1:end-forc_no), 'm', 2, 'd', 6, 'p',12,...
%! 'n',length(idx)-forc_no, 'l',forc_no);
%! plot (idx(end-forc_no+1:end), sin_saw(end-forc_no+1:end),'b',...
%! idx(end-forc_no+1:end), forecast,'r.')
%! legend ('Actual Data', 'Forecasted Data')
%! legend ('Location','NorthWest')
%! axis tight
%!###############################################################
%% tisean_res values have been generated using
%% 'rbf hen1000.dat -m4 -d6 -n500 -L15'
%!shared tisean_res
%! centers = [-4.320358e-01 -2.908398e-01 -9.039490e-01 9.768052e-01;6.979680e-01 9.502747e-01 -6.343287e-02 -8.834032e-02;-1.162171e-01 5.679579e-01 4.271632e-01 1.268386e-01;9.102671e-01 1.503345e+00 -4.783169e-01 5.498855e-01;-1.351572e+00 3.702876e-01 1.988522e-01 3.312123e-01;4.702139e-01 1.362105e+00 -2.625473e-01 1.226374e+00;1.150574e+00 7.697759e-01 8.992073e-01 -5.873108e-01;1.353985e+00 -6.395022e-03 -6.807937e-01 1.425706e+00;-7.949164e-01 1.161663e+00 1.300960e+00 -1.008006e+00;2.563368e-01 1.852738e-01 -1.137004e+00 7.576612e-01];
%! variance = 1.085525e+00;
%! coeffs = [1.183600e-01;1.374653e+00;-8.147723e-01;3.951915e+00;-7.316014e-01;-4.226517e+00;7.865977e-01;-1.715572e+00;-2.992770e+00;7.985524e-01;9.965155e-01];
%! sam_error = [5.846869e-01;6.037938e-01];
%! forecast = [2.975456e-01;7.949214e-01;-1.790842e-02;1.276656e+00;-6.040927e-01;6.557837e-01;1.390711e-02;1.067956e+00;-5.644539e-01;4.157955e-01;3.995851e-01;5.708989e-01;8.507144e-01;-1.989717e-01;1.216499e+00];
%! tisean_res = {centers, variance, coeffs, sam_error, forecast};
%!test
%! hen = henon (1000);
%! hen = hen(:,1);
%! [par, forecast] = rbf (hen,'m',4, 'd', 6, 'n',500,'l',15);
%! res = {par.centers, par.var, par.coeffs, par.err, forecast};
%! assert (res, tisean_res, -1e-6);
%% test if the program returns empty matrix when not told to cast
%!test
%! [p,f] = rbf(henon(100)(:,1));
%! assert(f,[]);
%% test if singular matrixes are found
%!error <singular> rbf(1:10);
%% ensure input correction warnings are called
%% they are promoted to errors so that the program does not do computation
%!error <forecast> warning("error","Octave:tisean"); [p,f] =rbf (1:10,...
%! 's',2,'l',3);
%!error <too large> warning("error","Octave:tisean"); rbf (1:10, 'p',11);
%!error <too large> warning("error","Octave:tisean"); rbf (1:10, 'n',11);
%!error <one output> warning("error","Octave:tisean"); rbf (1:10, 'l',11);
|