This file is indexed.

/usr/share/octave/packages/tisean-0.2.3/rbf.m is in octave-tisean 0.2.3-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
## Copyright (C) 1996-2015 Piotr Held
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or
## modify it under the terms of the GNU General Public
## License as published by the Free Software Foundation;
## either version 3 of the License, or (at your option) any
## later version.
##
## Octave is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied
## warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
## PURPOSE.  See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public
## License along with Octave; see the file COPYING.  If not,
## see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn{Function File} {[@var{par}, @var{forecast}] =} rbf (@var{X})
## @deftypefnx{Function File} {[@var{par}, @var{forecast}] =} rbf (@var{X}, @var{paramName}, @var{paramValue}, @dots{})
##
## This program models the data using a radial basis function (rbf) ansatz.
## The basis functions used are gaussians, with center points chosen to be data
## from the time series. If the 'DriftOff' switch is not set, a kind of
## Coulomb force is applied to them to let them drift a bit in order to
## distribute them more uniformly. The variance of the gaussians is set to the
## average distance between the centers.
## This program either tests the ansatz by calculating the average forecast
## error of the model, or makes a i-step prediction using the -L flag,
## additionally. The ansatz made is:
##
## @iftex
## @tex
## $$ x_{n+1} = a_0 + SUM a_{i}f_{i}(x_{n})$$
## @end tex
## @end iftex
## @ifnottex
## @example
## x_n+1 = a_0 SUM a_i * f_i(x_n)
## @end example
## @end ifnottex
##
## where x_n is the nth delay vector and f_i is a gaussian centered at the ith
## center point.
##
## @strong{Input}
##
## @table @var
## @item X
## Must be realvector. The output will be alligned with the input.
## @end table
##
## @strong{Parameters}
##
## @table @var
## @item m
## The embedding dimension. Synonymous with flag '-m' from TISEAN
## [default = 2].
## @item d
## Delay used for embedding [default = 1].
## @item p
## Number of centers [default = 10].
## @item s
## Steps to forecast (for the forecast error) [default = 1].
## @item n
## Number of points for the fit. The other points are used to estimate the
## out of sample error [default = length (@var{X})].
## @item l
## Determines the length of the predicted series [default = 0].
## @end table
##
## @strong{Switch}
##
## @table @var
## @item DriftOff
## Deactivates the drift (Coulomb force), which is otherwise on.
## @end table
##
## @strong{Output}
##
## @table @var
## @item pars
## This structure contains parameters used for the fit. It has the following
## fields:
## @itemize @bullet
## @item
## centers - contains coordinates of the center points
## @item
## var - variance used for the gaussians
## @item
## coeffs - contains the coefficients (weights) of the basis functions used
## for the model
## @item
## err - err(1) is the in sample error, and err(2) is the out of sample error
## (if it exists)
## @end itemize
## @item forecast
## Contains the forecasted points. It's length is equal to the value of
## parameter @var{l}
## @end table
##
## @strong{Algorithms}
##
## The algorithms for this functions have been taken from the TISEAN package.
## @end deftypefn

## Author: Piotr Held <pjheld@gmail.com>.
## This function is based on rbf of TISEAN 3.0.1
## https://github.com/heggus/Tisean"

function [pars, forecast] = rbf (X, varargin)

  # Initial input validation
  if (nargin < 1 || nargout > 2)
    print_usage;
  endif

  if ((isvector (X) == false) || (isreal(X) == false))
    error ('Octave:invalid-input-arg', "X must be a realvector");
  endif

  # Checking if the data isn't too short
  if (length (X) < 2)
    error ('Octave:invalid-input-arg', "X must have more elements than 1");
  endif

  # Default parameters
  embdim     = 2;
  delay      = 1;
  center_par = 10;
  step       = 1;
  insample   = length (X);
  clength    = 1000;

  #### Parse the input
  p = inputParser ();
  p.FunctionName = "rbf";

  isPositiveIntScalar = @(x) isreal(x) && isscalar (x) && ...
                             (x > 0) && (x-round(x) == 0);
  isPositiveScalar     = @(x) isreal(x) && isscalar (x) && (x > 0);

  p.addParamValue ("m", embdim, isPositiveIntScalar);
  p.addParamValue ("d", delay, isPositiveIntScalar);
  p.addParamValue ("p", center_par, isPositiveIntScalar);
  p.addParamValue ("s", step, isPositiveIntScalar);
  p.addParamValue ("n", insample, isPositiveIntScalar);
  p.addParamValue ("l", clength, isPositiveIntScalar);
  p.addSwitch ("DriftOff");

  p.parse (varargin{:});

  # Assign inputs
  embdim     = p.Results.m;
  delay      = p.Results.d;
  center_par = p.Results.p;
  step       = p.Results.s;
  insample   = p.Results.n;
  clength    = p.Results.l;
  makecast   = !ismember ('l',p.UsingDefaults);
  setdrift   = !p.Results.DriftOff;

  #Input corrections from main ()
  if (makecast)
    if (!ismember ('s', p.UsingDefaults))
      warning ('Octave:tisean', "Making forecast therefore value of parameter \
's' is now 1");
    endif
    step=1;
  endif

  if (insample > length (X))
    warning ('Octave:tisean', "Parameter 'n' was too large, it has been \
reduced to: %d", length (X));
    insample = length (X);
  endif

  if (center_par > length (X))
    warning ('Octave:tisean', "Parameter 'p' was too large, it has been \
reduced to: %d", length (X));
    center_par = length (X);
  endif

  # Correct X to always have more rows than columns
  trnspsd = false;
  if (rows (X) < columns (X))
    X = X.';
    trnspsd = true;
  endif

  ## If not enough outputs were specified
  if ((nargout < 2) && makecast)
    warning ('Octave:tisean', "Only one output was specified, no place to \ return forecasted points");
    makecast = false; 
  endif

  [centers, variance, coeffs, sample_err, forecast] = ...
    __rbf__ (X, embdim, delay, center_par, step, insample, clength, ...
             makecast, setdrift);

  if (trnspsd)
    centers    = centers.';
    variance   = variance.';
    coeffs     = coeffs.';
    sample_err = sample_err.';
    forecast   = forecast.';
  endif

  pars = struct ("centers", centers, "var", variance, "coeffs", coeffs,...
                "err", sample_err);

endfunction

%!demo
%! # sin_saw is a sinusoid multiplied by a saw function
%! idx = (1:2500).';
%! sin_saw = (5 + mod (idx, 165) ./15) .* sin (idx.* 2 * pi /32);
%!
%! forc_no = 170; #Number of forecasted points
%! [p,forecast]  = rbf (sin_saw(1:end-forc_no), 'm', 2, 'd', 6, 'p',12,...
%!                          'n',length(idx)-forc_no, 'l',forc_no);
%! plot (idx(end-forc_no+1:end), sin_saw(end-forc_no+1:end),'b',...
%!       idx(end-forc_no+1:end), forecast,'r.')
%! legend ('Actual Data', 'Forecasted Data')
%! legend ('Location','NorthWest')
%! axis tight
%!###############################################################

%% tisean_res values have been generated using
%% 'rbf hen1000.dat -m4 -d6 -n500 -L15'
%!shared tisean_res
%! centers   = [-4.320358e-01 -2.908398e-01 -9.039490e-01 9.768052e-01;6.979680e-01 9.502747e-01 -6.343287e-02 -8.834032e-02;-1.162171e-01 5.679579e-01 4.271632e-01 1.268386e-01;9.102671e-01 1.503345e+00 -4.783169e-01 5.498855e-01;-1.351572e+00 3.702876e-01 1.988522e-01 3.312123e-01;4.702139e-01 1.362105e+00 -2.625473e-01 1.226374e+00;1.150574e+00 7.697759e-01 8.992073e-01 -5.873108e-01;1.353985e+00 -6.395022e-03 -6.807937e-01 1.425706e+00;-7.949164e-01 1.161663e+00 1.300960e+00 -1.008006e+00;2.563368e-01 1.852738e-01 -1.137004e+00 7.576612e-01];
%! variance  = 1.085525e+00;
%! coeffs = [1.183600e-01;1.374653e+00;-8.147723e-01;3.951915e+00;-7.316014e-01;-4.226517e+00;7.865977e-01;-1.715572e+00;-2.992770e+00;7.985524e-01;9.965155e-01];
%! sam_error = [5.846869e-01;6.037938e-01];
%! forecast  = [2.975456e-01;7.949214e-01;-1.790842e-02;1.276656e+00;-6.040927e-01;6.557837e-01;1.390711e-02;1.067956e+00;-5.644539e-01;4.157955e-01;3.995851e-01;5.708989e-01;8.507144e-01;-1.989717e-01;1.216499e+00];
%! tisean_res = {centers, variance, coeffs, sam_error, forecast};

%!test
%! hen = henon (1000);
%! hen = hen(:,1);
%! [par, forecast] = rbf (hen,'m',4, 'd', 6, 'n',500,'l',15);
%! res = {par.centers, par.var, par.coeffs, par.err, forecast};
%! assert (res, tisean_res, -1e-6);

%% test if the program returns empty matrix when not told to cast
%!test
%! [p,f] = rbf(henon(100)(:,1));
%! assert(f,[]);

%% test if singular matrixes are found
%!error <singular> rbf(1:10);

%% ensure input correction warnings are called
%% they are promoted to errors so that the program does not do computation
%!error <forecast> warning("error","Octave:tisean"); [p,f] =rbf (1:10,...
%!                                                              's',2,'l',3);
%!error <too large> warning("error","Octave:tisean"); rbf (1:10, 'p',11);
%!error <too large> warning("error","Octave:tisean"); rbf (1:10, 'n',11);
%!error <one output> warning("error","Octave:tisean"); rbf (1:10, 'l',11);