This file is indexed.

/usr/share/octave/packages/tisean-0.2.3/surrogates.m is in octave-tisean 0.2.3-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
## Copyright (C) 1996-2015 Piotr Held
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or
## modify it under the terms of the GNU General Public
## License as published by the Free Software Foundation;
## either version 3 of the License, or (at your option) any
## later version.
##
## Octave is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied
## warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
## PURPOSE.  See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public
## License along with Octave; see the file COPYING.  If not,
## see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn{Function File} {[@var{surro_data}, @var{pars}] =} surrogates (@var{S})
## @deftypefnx{Function File} {[@var{surro_data}, @var{pars}] =} surrogates (@var{S}, @var{paramName}, @var{paramValue}, @dots{})
##
## Generates multivariate surrogate data (implements the iterative Fourier scheme).
## Surrogate data is generated from a dataset with the aim of testing whether the 
## dataset was generated by a given process (null hypothesis). The Fourier scheme 
## assumes that the dataset is the output of a Gaussian linear stochastic process.
## Surrogate data is generally used to test the null hypothesis.
##
## @strong{Input}
##
## @table @var
## @item S
## This function always assumes that each time series is along the longer 
## dimension of matrix @var{S}. It also assumes that every dimension 
## (counting along the shorter dimension) of @var{S} is considered a 
## component of the time series. It's length must be factorizable by only
## 2, 3 and 5. If not the largest submatrix that fulfills this requirement will be
## used. The function @code{endtoend} can be used to determine what is the best
## submatrix for the data and then sending only that submatrix to this program.
## Padding with zeros is @strong{not} and option.
## @end table
##
## @strong {Parameters}
##
## @table @var
## @item n
## Sets the number of surrogates to be calculated. Determines the form of
## the output (see Output section) [default = 1].
## @item i
## The maximum number of permutations. Value '0' yields random permutations or if
## switch @var{exact} is set an unrescaled FFT surrogate. Value '1' is a surrogate
## close to the result of the AAFT procedure, but not quite the same. Value '-1'
## means the program will perform iterations until there is no change between them
## [default = -1].
## @item seed
## Set the seed for the random generator [default = use default seed].
## @end table
##
## @strong {Switch}
##
## @table @var
## @item exact
## This switch makes the spectrum of the output exact rather than a distribution.
## @end table
##
## @strong{Outputs}
##
## @table @var
## @item surro_data
## If parameter @code{n == 1} then this is a matrix that holds the surrogate data.
## If parameter @code{n > 1} then it is @var{n} x 1 cell array of matrixes with
## the data. In both cases the matrixes themselves are alligned with the input.
## @item pars
## This is a matrix of size @var{n} x 2 (if the input components were column
## vectors, otherwise transposed). The first column contains the number of
## iteration it took to generate the @var{i}-th surrogate, whereas the second
## column is the relative discrepency for the @var{i}-th surrogate.
## @end table
##
## @seealso{demo surrogates, endtoend}
##
## @strong{Algorithms}
##
## The algorithms for this functions have been taken from the TISEAN package.
## @end deftypefn

## Author: Piotr Held <pjheld@gmail.com>.
## This function is based on surrogates of TISEAN 3.0.1 
## https://github.com/heggus/Tisean"

function [surro_data, pars] = surrogates (S,varargin)

  if (nargin < 1 || nargout > 2)
    print_usage;
  endif

  if ((ismatrix (S) == false) || (isreal(S) == false) || ...
       (isreal(S) == false))
    error ('Octave:invalid-input-arg', "S must be a realmatrix");
  endif

  # Default values
  nsur           = 1;
  max_iterations = -1; # means until no change
  seed           = 0;

  #### Parse the input
  p = inputParser ();
  p.FunctionName = "surrogates";

  isPositiveIntScalar   = @(x) isreal(x) && isscalar (x) ...
                               && (x > 0) && (x-round(x) == 0);
  isValidIterationValue = @(x) isPositiveIntScalar (x) ...
                               || (isscalar(x) && ((x == 0) || (x == -1)));
  isNonNegativeScalar   = @(x) isreal(x) && isscalar (x) ...
                               && ((x > 0) || (x == 0));

  p.addParamValue ("n", nsur, isPositiveIntScalar);
  p.addParamValue ("i", max_iterations, isValidIterationValue);
  p.addParamValue ("seed", seed, isNonNegativeScalar);
  p.addSwitch ("exact");

  p.parse (varargin{:});

  # Assign input
  nsur           = p.Results.n;
  max_iterations = p.Results.i;
  seed           = p.Results.seed;
  ispec          = p.Results.exact;

  # Check if nsur is not large
  if (nsur > 1000)
    warning ("Octave:tisean", ["Parameter 'n' is larger than 1000, this ", ...
                               "function migth execute a long time and take ",...
                               "up a lot of memory"])
  endif

  # Correct S to always have more rows than columns
  trnspsd = false;
  if (rows (S) < columns (S))
    S = S.';
    trnspsd = true;
  endif

  # Check if the length of 'S' can be factorized by only 2, 3 and 5
  original_length = length (S);
  while (max (factor (length (S))) > 5)
   S(end,:) = [];
  endwhile

  if (original_length > length (S))
    warning ("Octave:tisean",...
             ["The length of 'S' was not factorizable by 2, 3 and 5. ", ...
              "Using only first %d so that it's length would fulfill this ",...
              "requirement"], length (S));
  endif

  # Compute the output
  [surro_data, pars] = __surrogates__ (S, nsur, max_iterations, ispec, seed);

  # If the input was transposed allign output with it
  if (trnspsd)
    pars       = pars.';
    surro_data = cellfun (@transpose, surro_data, 'UniformOutput', false);
  endif

  # If surro_data is a single cell, then change it to be a matrix
  if (isequal (size (surro_data), [1,1]))
    surro_data = surro_data {1};
  endif

endfunction

%!demo
%% 'x' will be a stationary Gaussian linear stochastic process 
%! x = zeros (2000,1);
%! for i = 2:2000
%!   x(i) = 0.7*x(i-1) +  (-6 + sum (rand ([size(1), 12]), 3));
%! endfor
%!
%! # 'spike' is the process above measured s_n (x_n) = x_n^3.
%! spike = x.^3;
%!
%! # Plot the data
%! subplot (2,1,1)
%! plot (spike,'g');
%! axis tight
%! title ("spike")
%! subplot (2,1,2)
%! plot (surrogates(spike),'b');
%! axis tight
%! title ("surrogates")
%!###############################################################

%!shared s,p
%! [s,p] = surrogates (henon (1000).', 'i', 50, 'n', 15);
%! p = p.';

%% Check if parameter i (max iterations works properly)
%!test
%! expected(1:15) = 50;
%! assert (p(:,1), expected.')

%% Check if the relative discrepancy remains similar
%!assert (std (p(:,2)), 0, 5e-4)

%% Check if cell was properly created and transposed
%!assert(iscell (s) && isequal (size (s), [15, 1]))
%!assert(rows (s{1}) < columns (s{1}))

%% Check if shortening data is discovered
%% Warnings are promoted to errors to avoid further computation
%!error <factorizable> warning ("error", "Octave:tisean"); surrogates (henon (11));

%% Check if shortening the data works as expected
%!test
%! warning ("off")
%! expected = surrogates (henon (100), 'seed', 0.25);
%! result   = surrogates (henon (102), 'seed', 0.25);
%! assert (result, expected)

%% Check if checking parameter 'n' works as expected
%!error <long> warning ("error", "Octave:tisean"); surrogates ([1 2], 'n', 1001);