/usr/share/octave/packages/tisean-0.2.3/surrogates.m is in octave-tisean 0.2.3-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 | ## Copyright (C) 1996-2015 Piotr Held
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or
## modify it under the terms of the GNU General Public
## License as published by the Free Software Foundation;
## either version 3 of the License, or (at your option) any
## later version.
##
## Octave is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied
## warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
## PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public
## License along with Octave; see the file COPYING. If not,
## see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn{Function File} {[@var{surro_data}, @var{pars}] =} surrogates (@var{S})
## @deftypefnx{Function File} {[@var{surro_data}, @var{pars}] =} surrogates (@var{S}, @var{paramName}, @var{paramValue}, @dots{})
##
## Generates multivariate surrogate data (implements the iterative Fourier scheme).
## Surrogate data is generated from a dataset with the aim of testing whether the
## dataset was generated by a given process (null hypothesis). The Fourier scheme
## assumes that the dataset is the output of a Gaussian linear stochastic process.
## Surrogate data is generally used to test the null hypothesis.
##
## @strong{Input}
##
## @table @var
## @item S
## This function always assumes that each time series is along the longer
## dimension of matrix @var{S}. It also assumes that every dimension
## (counting along the shorter dimension) of @var{S} is considered a
## component of the time series. It's length must be factorizable by only
## 2, 3 and 5. If not the largest submatrix that fulfills this requirement will be
## used. The function @code{endtoend} can be used to determine what is the best
## submatrix for the data and then sending only that submatrix to this program.
## Padding with zeros is @strong{not} and option.
## @end table
##
## @strong {Parameters}
##
## @table @var
## @item n
## Sets the number of surrogates to be calculated. Determines the form of
## the output (see Output section) [default = 1].
## @item i
## The maximum number of permutations. Value '0' yields random permutations or if
## switch @var{exact} is set an unrescaled FFT surrogate. Value '1' is a surrogate
## close to the result of the AAFT procedure, but not quite the same. Value '-1'
## means the program will perform iterations until there is no change between them
## [default = -1].
## @item seed
## Set the seed for the random generator [default = use default seed].
## @end table
##
## @strong {Switch}
##
## @table @var
## @item exact
## This switch makes the spectrum of the output exact rather than a distribution.
## @end table
##
## @strong{Outputs}
##
## @table @var
## @item surro_data
## If parameter @code{n == 1} then this is a matrix that holds the surrogate data.
## If parameter @code{n > 1} then it is @var{n} x 1 cell array of matrixes with
## the data. In both cases the matrixes themselves are alligned with the input.
## @item pars
## This is a matrix of size @var{n} x 2 (if the input components were column
## vectors, otherwise transposed). The first column contains the number of
## iteration it took to generate the @var{i}-th surrogate, whereas the second
## column is the relative discrepency for the @var{i}-th surrogate.
## @end table
##
## @seealso{demo surrogates, endtoend}
##
## @strong{Algorithms}
##
## The algorithms for this functions have been taken from the TISEAN package.
## @end deftypefn
## Author: Piotr Held <pjheld@gmail.com>.
## This function is based on surrogates of TISEAN 3.0.1
## https://github.com/heggus/Tisean"
function [surro_data, pars] = surrogates (S,varargin)
if (nargin < 1 || nargout > 2)
print_usage;
endif
if ((ismatrix (S) == false) || (isreal(S) == false) || ...
(isreal(S) == false))
error ('Octave:invalid-input-arg', "S must be a realmatrix");
endif
# Default values
nsur = 1;
max_iterations = -1; # means until no change
seed = 0;
#### Parse the input
p = inputParser ();
p.FunctionName = "surrogates";
isPositiveIntScalar = @(x) isreal(x) && isscalar (x) ...
&& (x > 0) && (x-round(x) == 0);
isValidIterationValue = @(x) isPositiveIntScalar (x) ...
|| (isscalar(x) && ((x == 0) || (x == -1)));
isNonNegativeScalar = @(x) isreal(x) && isscalar (x) ...
&& ((x > 0) || (x == 0));
p.addParamValue ("n", nsur, isPositiveIntScalar);
p.addParamValue ("i", max_iterations, isValidIterationValue);
p.addParamValue ("seed", seed, isNonNegativeScalar);
p.addSwitch ("exact");
p.parse (varargin{:});
# Assign input
nsur = p.Results.n;
max_iterations = p.Results.i;
seed = p.Results.seed;
ispec = p.Results.exact;
# Check if nsur is not large
if (nsur > 1000)
warning ("Octave:tisean", ["Parameter 'n' is larger than 1000, this ", ...
"function migth execute a long time and take ",...
"up a lot of memory"])
endif
# Correct S to always have more rows than columns
trnspsd = false;
if (rows (S) < columns (S))
S = S.';
trnspsd = true;
endif
# Check if the length of 'S' can be factorized by only 2, 3 and 5
original_length = length (S);
while (max (factor (length (S))) > 5)
S(end,:) = [];
endwhile
if (original_length > length (S))
warning ("Octave:tisean",...
["The length of 'S' was not factorizable by 2, 3 and 5. ", ...
"Using only first %d so that it's length would fulfill this ",...
"requirement"], length (S));
endif
# Compute the output
[surro_data, pars] = __surrogates__ (S, nsur, max_iterations, ispec, seed);
# If the input was transposed allign output with it
if (trnspsd)
pars = pars.';
surro_data = cellfun (@transpose, surro_data, 'UniformOutput', false);
endif
# If surro_data is a single cell, then change it to be a matrix
if (isequal (size (surro_data), [1,1]))
surro_data = surro_data {1};
endif
endfunction
%!demo
%% 'x' will be a stationary Gaussian linear stochastic process
%! x = zeros (2000,1);
%! for i = 2:2000
%! x(i) = 0.7*x(i-1) + (-6 + sum (rand ([size(1), 12]), 3));
%! endfor
%!
%! # 'spike' is the process above measured s_n (x_n) = x_n^3.
%! spike = x.^3;
%!
%! # Plot the data
%! subplot (2,1,1)
%! plot (spike,'g');
%! axis tight
%! title ("spike")
%! subplot (2,1,2)
%! plot (surrogates(spike),'b');
%! axis tight
%! title ("surrogates")
%!###############################################################
%!shared s,p
%! [s,p] = surrogates (henon (1000).', 'i', 50, 'n', 15);
%! p = p.';
%% Check if parameter i (max iterations works properly)
%!test
%! expected(1:15) = 50;
%! assert (p(:,1), expected.')
%% Check if the relative discrepancy remains similar
%!assert (std (p(:,2)), 0, 5e-4)
%% Check if cell was properly created and transposed
%!assert(iscell (s) && isequal (size (s), [15, 1]))
%!assert(rows (s{1}) < columns (s{1}))
%% Check if shortening data is discovered
%% Warnings are promoted to errors to avoid further computation
%!error <factorizable> warning ("error", "Octave:tisean"); surrogates (henon (11));
%% Check if shortening the data works as expected
%!test
%! warning ("off")
%! expected = surrogates (henon (100), 'seed', 0.25);
%! result = surrogates (henon (102), 'seed', 0.25);
%! assert (result, expected)
%% Check if checking parameter 'n' works as expected
%!error <long> warning ("error", "Octave:tisean"); surrogates ([1 2], 'n', 1001);
|