/usr/share/octave/packages/tisean-0.2.3/xzero.m is in octave-tisean 0.2.3-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 | ## Copyright (C) 1996-2015 Piotr Held
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or
## modify it under the terms of the GNU General Public
## License as published by the Free Software Foundation;
## either version 3 of the License, or (at your option) any
## later version.
##
## Octave is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied
## warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
## PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public
## License along with Octave; see the file COPYING. If not,
## see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn{Function File} {output =} xzero (@var{X1}, @var{X2})
## @deftypefnx{Function File} {output =} xzero (@var{X1}, @var{X2}, @var{paramName}, @var{paramValue}, @dots{})
##
## Takes two data sets and fits a zeroth order model of data set 1 (@var{X1})
## to predict data set 2 (@var{X2}) - cross prediction. It then computes the
## error of the model. This is done by searching for all neighbors in @var{X1}
## of the points of set @var{X2} which should be forecasted and taking as their
## images the average of the images of the neighbors. The obtained forecast
## error is normalized to the variance of data set @var{X2}.
##
## @strong{Inputs}
##
## Both @var{X1} and @var{X2} must be present. They must be realvectors
## of the same length.
##
## @strong{Parameters}
##
## @table @var
## @item m
## Embedding dimension [default = 3].
## @item d
## Delay for embedding [default = 1].
## @item n
## The number of points for which the error should be calculated
## [default = all].
## @item k
## Minimum number of neighbors for the fit [default = 30].
## @item r
## The neighborhood size to start with [default = 1e-3].
## @item f
## Factor by which to increase the neighborhood size if not
## enough neighbors were found [default = 1.2].
## @item s
## Steps to be forecast (@code{x2(n+steps) = av(x1(i+steps)}) [default = 1].
## @end table
##
## @strong{Output}
##
## Contains value of parameter '@var{s}' lines. Each line represents the
## forecast error divided by the standard deviation of the second data set
## (@var{X2}). This second data set is the one being forecasted.
##
## @strong{Algorithms}
##
## The algorithms for this functions have been taken from the TISEAN package.
## @end deftypefn
## Author: Piotr Held <pjheld@gmail.com>.
## This function is based on xzero of TISEAN 3.0.1
## https://github.com/heggus/Tisean"
function output = xzero (X1, X2, varargin)
# Initial input validation
if (nargin < 2)
print_usage;
endif
if ((isvector (X1) == false) || (isreal(X1) == false))
error ('Octave:invalid-input-arg', "X1 must be a realvector");
endif
if ((isvector (X2) == false) || (isreal(X2) == false))
error ('Octave:invalid-input-arg', "X2 must be a realvector");
endif
if (length (X1) != length (X2))
error ('Octave:invalid-input-arg', "X1 and X2 must be of same length");
endif
# Default parameters
embdim = 3;
delay = 1;
clength = length (X1);
minn = 30;
eps0 = 1e-3;
epsf = 1.2;
step = 1;
#### Parse the input
p = inputParser ();
p.FunctionName = "xzero";
isPositiveIntScalar = @(x) isreal(x) && isscalar (x) && ...
(x > 0) && (x-round(x) == 0);
isPositiveScalar = @(x) isreal(x) && isscalar (x) && (x > 0);
p.addParamValue ("m", embdim, isPositiveIntScalar);
p.addParamValue ("d", delay, isPositiveIntScalar);
p.addParamValue ("n", clength, isPositiveIntScalar);
p.addParamValue ("k", minn, isPositiveIntScalar);
p.addParamValue ("r", eps0, isPositiveScalar);
p.addParamValue ("f", epsf, isPositiveScalar);
p.addParamValue ("s", step, isPositiveIntScalar);
p.parse (varargin{:});
# Assign input
embdim = p.Results.m;
delay = p.Results.d;
clength = p.Results.n;
minn = p.Results.k;
eps0 = p.Results.r;
epsset = !ismember ("r", p.UsingDefaults);
epsf = p.Results.f;
step = p.Results.s;
output = __xzero__ (X1, X2, embdim, delay, clength, minn, eps0, epsset, ...
epsf, step);
endfunction
%!fail ("xzero(1)");
%!fail ("xzero('a')");
%!test
%! hen = henon(2000)(:,1);
%! hen1 = hen(1:1000);
%! hen2 = hen(1001:end);
%! res_tisean = [1 0.6438699;2 0.9101371;3 0.9752469;4 0.9600329;5 0.9788585;6 0.9937851;7 1.002654;8 0.9973579;9 1.00776;10 1.008823;11 1.016724;12 1.017996;13 1.011284;14 1.005963;15 1.008479;16 1.007647;17 1.009703;18 1.018097;19 1.008374;20 1.006889];
%! out = xzero (hen1,hen2,'m',4,'d',6,'s',20);
%! assert(out, res_tisean(:,2),-1e-6);
|