This file is indexed.

/usr/lib/python2.7/dist-packages/cartopy/mpl/geoaxes.py is in python-cartopy 0.14.2+dfsg1-2build3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
# (C) British Crown Copyright 2011 - 2016, Met Office
#
# This file is part of cartopy.
#
# cartopy is free software: you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the
# Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# cartopy is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with cartopy.  If not, see <https://www.gnu.org/licenses/>.
"""
This module defines the :class:`GeoAxes` class, for use with matplotlib.

When a matplotlib figure contains a GeoAxes the plotting commands can transform
plot results from source coordinates to the GeoAxes' target projection.

"""

from __future__ import (absolute_import, division, print_function)

import collections
import contextlib
import warnings
import weakref

import matplotlib as mpl
import matplotlib.artist
import matplotlib.axes
from matplotlib.image import imread
import matplotlib.transforms as mtransforms
import matplotlib.patches as mpatches
import matplotlib.path as mpath
import matplotlib.ticker as mticker
import numpy as np
import numpy.ma as ma
import shapely.geometry as sgeom

from cartopy import config
import cartopy.crs as ccrs
import cartopy.feature
import cartopy.img_transform
from cartopy.mpl.clip_path import clip_path
import cartopy.mpl.feature_artist as feature_artist
import cartopy.mpl.patch as cpatch
from cartopy.mpl.slippy_image_artist import SlippyImageArtist
from cartopy.vector_transform import vector_scalar_to_grid


assert matplotlib.__version__ >= '1.3', ('Cartopy is only supported with '
                                         'matplotlib 1.3 or greater.')


_PATH_TRANSFORM_CACHE = weakref.WeakKeyDictionary()
"""
A nested mapping from path, source CRS, and target projection to the
resulting transformed paths::

    {path: {(source_crs, target_projection): list_of_paths}}

Provides a significant performance boost for contours which, at
matplotlib 1.2.0 called transform_path_non_affine twice unnecessarily.

"""


# XXX call this InterCRSTransform
class InterProjectionTransform(mtransforms.Transform):
    """
    Transforms coordinates from the source_projection to
    the ``target_projection``.

    """
    input_dims = 2
    output_dims = 2
    is_separable = False
    has_inverse = True

    def __init__(self, source_projection, target_projection):
        """
        Create the transform object from the given projections.

        Args:

            * source_projection - A :class:`~cartopy.crs.CRS`.
            * target_projection - A :class:`~cartopy.crs.CRS`.

        """
        # assert target_projection is cartopy.crs.Projection
        # assert source_projection is cartopy.crs.CRS
        self.source_projection = source_projection
        self.target_projection = target_projection
        mtransforms.Transform.__init__(self)

    def __repr__(self):
        return ('< {!s} {!s} -> {!s} >'.format(self.__class__.__name__,
                                               self.source_projection,
                                               self.target_projection))

    def transform_non_affine(self, xy):
        """
        Transforms from source to target coordinates.

        Args:

            * xy - An (n,2) array of points in source coordinates.

        Returns:

            * An (n,2) array of transformed points in target coordinates.

        """
        prj = self.target_projection
        if isinstance(xy, np.ndarray):
            return prj.transform_points(self.source_projection,
                                        xy[:, 0], xy[:, 1])[:, 0:2]
        else:
            x, y = xy
            x, y = prj.transform_point(x, y, self.source_projection)
            return x, y

    def transform_path_non_affine(self, src_path):
        """
        Transforms from source to target coordinates.

        Caches results, so subsequent calls with the same *src_path* argument
        (and the same source and target projections) are faster.

        Args:

            * src_path - A matplotlib :class:`~matplotlib.path.Path` object
                         with vertices in source coordinates.

        Returns

            * A matplotlib :class:`~matplotlib.path.Path` with vertices
              in target coordinates.

        """
        mapping = _PATH_TRANSFORM_CACHE.get(src_path)
        if mapping is not None:
            key = (self.source_projection, self.target_projection)
            result = mapping.get(key)
            if result is not None:
                return result

        # Allow the vertices to be quickly transformed, if
        # quick_vertices_transform allows it.
        new_vertices = self.target_projection.quick_vertices_transform(
            src_path.vertices, self.source_projection)
        if new_vertices is not None:
            if new_vertices is src_path.vertices:
                return src_path
            else:
                return mpath.Path(new_vertices, src_path.codes)

        if src_path.vertices.shape == (1, 2):
            return mpath.Path(self.transform(src_path.vertices))

        transformed_geoms = []
        # Check whether this transform has the "force_path_ccw" attribute set.
        # This is a cartopy extension to the Transform API to allow finer
        # control of Path orientation handling (Path ordering is not important
        # in matplotlib, but is in Cartopy).
        geoms = cpatch.path_to_geos(src_path,
                                    getattr(self, 'force_path_ccw', False))

        for geom in geoms:
            proj_geom = self.target_projection.project_geometry(
                geom, self.source_projection)
            transformed_geoms.append(proj_geom)

        if not transformed_geoms:
            result = mpath.Path(np.empty([0, 2]))
        else:
            paths = cpatch.geos_to_path(transformed_geoms)
            if not paths:
                return mpath.Path(np.empty([0, 2]))
            points, codes = list(zip(*[cpatch.path_segments(path,
                                                            curves=False,
                                                            simplify=False)
                                       for path in paths]))
            result = mpath.Path(np.concatenate(points, 0),
                                np.concatenate(codes))

        # store the result in the cache for future performance boosts
        key = (self.source_projection, self.target_projection)
        if mapping is None:
            _PATH_TRANSFORM_CACHE[src_path] = {key: result}
        else:
            mapping[key] = result

        return result

    def inverted(self):
        """
        Return a matplotlib :class:`~matplotlib.transforms.Transform`
        from target to source coordinates.

        """
        return InterProjectionTransform(self.target_projection,
                                        self.source_projection)


class GeoAxes(matplotlib.axes.Axes):
    """
    A subclass of :class:`matplotlib.axes.Axes` which represents a
    map :class:`~cartopy.crs.Projection`.

    This class replaces the matplotlib :class:`~matplotlib.axes.Axes` class
    when created with the *projection* keyword. For example::

        # Set up a standard map for latlon data.
        geo_axes = pyplot.axes(projection=cartopy.crs.PlateCarree())

        # Set up an OSGB map.
        geo_axes = pyplot.subplot(2, 2, 1, projection=cartopy.crs.OSGB())

    When a source projection is provided to one of it's plotting methods,
    using the *transform* keyword, the standard matplotlib plot result is
    transformed from source coordinates to the target projection. For example::

        # Plot latlon data on an OSGB map.
        pyplot.axes(projection=cartopy.crs.OSGB())
        pyplot.contourf(x, y, data, transform=cartopy.crs.PlateCarree())

    """
    def __init__(self, *args, **kwargs):
        """
        Create a GeoAxes object using standard matplotlib
        :class:`~matplotlib.axes.Axes` args and kwargs.

        Kwargs:

            * map_projection - The target :class:`~cartopy.crs.Projection` of
                               this Axes object.

        All other args and keywords are passed through to
        :class:`matplotlib.axes.Axes`.

        """
        self.projection = kwargs.pop('map_projection')
        """The :class:`cartopy.crs.Projection` of this GeoAxes."""

        self.outline_patch = None
        """The patch that provides the line bordering the projection."""

        self.background_patch = None
        """The patch that provides the filled background of the projection."""

        super(GeoAxes, self).__init__(*args, **kwargs)
        self._gridliners = []
        self.img_factories = []
        self._done_img_factory = False

    def add_image(self, factory, *args, **kwargs):
        """
        Adds an image "factory" to the Axes.

        Any image "factory" added, will be asked to retrieve an image
        with associated metadata for a given bounding box at draw time.
        The advantage of this approach is that the limits of the map
        do not need to be known when adding the image factory, but can
        be deferred until everything which can effect the limits has been
        added.

        Currently an image "factory" is just an object with
        a ``image_for_domain`` method. Examples of image factories
        are :class:`cartopy.io.img_nest.NestedImageCollection` and
        :class:`cartopy.io.image_tiles.GoogleTiles`.

        """
        if hasattr(factory, 'image_for_domain'):
            # XXX TODO: Needs deprecating.
            self.img_factories.append([factory, args, kwargs])
        else:
            # Args and kwargs not allowed.
            assert not bool(args) and not bool(kwargs)
            image = factory
            try:
                super(GeoAxes, self).add_image(image)
            except AttributeError:
                # If add_image method doesn't exist (only available from
                # v1.4 onwards) we implement it ourselves.
                self._set_artist_props(image)
                self.images.append(image)
                image._remove_method = lambda h: self.images.remove(h)
            return image

    @contextlib.contextmanager
    def hold_limits(self, hold=True):
        """
        Keep track of the original view and data limits for the life of this
        context manager, optionally reverting any changes back to the original
        values after the manager exits.

        Parameters
        ----------
        hold : bool (default True)
            Whether to revert the data and view limits after the context
            manager exits.

        """
        data_lim = self.dataLim.frozen().get_points()
        view_lim = self.viewLim.frozen().get_points()
        other = (self.ignore_existing_data_limits,
                 self._autoscaleXon, self._autoscaleYon)
        try:
            yield
        finally:
            if hold:
                self.dataLim.set_points(data_lim)
                self.viewLim.set_points(view_lim)
                (self.ignore_existing_data_limits,
                    self._autoscaleXon, self._autoscaleYon) = other

    @matplotlib.artist.allow_rasterization
    def draw(self, renderer=None, inframe=False):
        """
        Extends the standard behaviour of :func:`matplotlib.axes.Axes.draw`.

        Draws grid lines and image factory results before invoking standard
        matplotlib drawing. A global range is used if no limits have yet
        been set.

        """
        # If data has been added (i.e. autoscale hasn't been turned off)
        # then we should autoscale the view.
        if self.get_autoscale_on() and self.ignore_existing_data_limits:
            self.autoscale_view()

        if self.outline_patch.reclip or self.background_patch.reclip:
            clipped_path = clip_path(self.outline_patch.orig_path,
                                     self.viewLim)
            self.outline_patch._path = clipped_path
            self.background_patch._path = clipped_path

        for gl in self._gridliners:
            gl._draw_gridliner(background_patch=self.background_patch)
        self._gridliners = []

        # XXX This interface needs a tidy up:
        #       image drawing on pan/zoom;
        #       caching the resulting image;
        #       buffering the result by 10%...;
        if not self._done_img_factory:
            for factory, args, kwargs in self.img_factories:
                img, extent, origin = factory.image_for_domain(
                    self._get_extent_geom(factory.crs), args[0])
                self.imshow(img, extent=extent, origin=origin,
                            transform=factory.crs, *args[1:], **kwargs)
        self._done_img_factory = True

        return matplotlib.axes.Axes.draw(self, renderer=renderer,
                                         inframe=inframe)

    def __str__(self):
        return '< GeoAxes: %s >' % self.projection

    def cla(self):
        """Clears the current axes and adds boundary lines."""
        result = matplotlib.axes.Axes.cla(self)
        self.xaxis.set_visible(False)
        self.yaxis.set_visible(False)
        # Enable tight autoscaling.
        self._tight = True
        self.set_aspect('equal')

        with self.hold_limits():
            self._boundary()

        # XXX consider a margin - but only when the map is not global...
        # self._xmargin = 0.15
        # self._ymargin = 0.15

        self.dataLim.intervalx = self.projection.x_limits
        self.dataLim.intervaly = self.projection.y_limits

        return result

    def format_coord(self, x, y):
        """Return a string formatted for the matplotlib GUI status bar."""
        lon, lat = ccrs.Geodetic().transform_point(x, y, self.projection)

        ns = 'N' if lat >= 0.0 else 'S'
        ew = 'E' if lon >= 0.0 else 'W'

        return u'%.4g, %.4g (%f\u00b0%s, %f\u00b0%s)' % (x, y, abs(lat),
                                                         ns, abs(lon), ew)

    def coastlines(self, resolution='110m', color='black', **kwargs):
        """
        Adds coastal **outlines** to the current axes from the Natural Earth
        "coastline" shapefile collection.

        Kwargs:

            * resolution - a named resolution to use from the Natural Earth
                           dataset. Currently can be one of "110m", "50m", and
                           "10m".

        .. note::

            Currently no clipping is done on the coastlines before adding
            them to the axes. This means, if very high resolution coastlines
            are being used, performance is likely to be severely effected.
            This should be resolved transparently by v0.5.

        """
        kwargs['edgecolor'] = color
        kwargs['facecolor'] = 'none'
        feature = cartopy.feature.NaturalEarthFeature('physical', 'coastline',
                                                      resolution, **kwargs)
        return self.add_feature(feature)

    def tissot(self, rad_km=5e5, lons=None, lats=None, n_samples=80, **kwargs):
        """
        Adds Tissot's indicatrices to the axes.

        Kwargs:

            * rad_km - The radius in km of the the circles to be drawn.

            * lons - A numpy.ndarray, list or tuple of longitude values that
                     locate the centre of each circle. Specifying more than one
                     dimension allows individual points to be drawn whereas a
                     1D array produces a grid of points.

            * lats - A numpy.ndarray, list or tuple of latitude values that
                     that locate the centre of each circle. See lons.

            * n_samples - Integer number of points sampled around the
                          circumference of each circle.

        **kwargs are passed through to `class:ShapelyFeature`.

        """
        from cartopy import geodesic

        geod = geodesic.Geodesic()
        geoms = []

        if lons is None:
            lons = np.linspace(-180, 180, 6, endpoint=False)
        else:
            lons = np.asarray(lons)
        if lats is None:
            lats = np.linspace(-80, 80, 6)
        else:
            lats = np.asarray(lats)

        if lons.ndim == 1 or lats.ndim == 1:
            lons, lats = np.meshgrid(lons, lats)
        lons, lats = lons.flatten(), lats.flatten()

        if lons.shape != lats.shape:
            raise ValueError('lons and lats must have the same shape.')

        for i in range(len(lons)):
                circle = geod.circle(lons[i], lats[i], rad_km,
                                     n_samples=n_samples)
                geoms.append(sgeom.Polygon(circle))

        feature = cartopy.feature.ShapelyFeature(geoms, ccrs.Geodetic(),
                                                 **kwargs)
        return self.add_feature(feature)

    def natural_earth_shp(self, name='land', resolution='110m',
                          category='physical', **kwargs):
        """
        Adds the geometries from the specified Natural Earth shapefile to the
        Axes as a :class:`~matplotlib.collections.PathCollection`.

        ``**kwargs`` are passed through to the
        :class:`~matplotlib.collections.PathCollection` constructor.

        Returns the created :class:`~matplotlib.collections.PathCollection`.

        .. note::

            Currently no clipping is done on the geometries before adding them
            to the axes. This means, if very high resolution geometries are
            being used, performance is likely to be severely effected. This
            should be resolved transparently by v0.5.

        """
        warnings.warn('This method has been deprecated.'
                      ' Please use `add_feature` instead.')
        kwargs.setdefault('edgecolor', 'face')
        kwargs.setdefault('facecolor', cartopy.feature.COLORS['land'])
        feature = cartopy.feature.NaturalEarthFeature(category, name,
                                                      resolution, **kwargs)
        return self.add_feature(feature)

    def add_feature(self, feature, **kwargs):
        """
        Adds the given :class:`~cartopy.feature.Feature` instance to the axes.

        Args:

        * feature:
            An instance of :class:`~cartopy.feature.Feature`.

        Kwargs:
            Keyword arguments to be used when drawing the feature. This allows
            standard matplotlib control over aspects such as 'facecolor',
            'alpha', etc.

        Returns:
            * A :class:`cartopy.mpl.feature_artist.FeatureArtist`
              instance responsible for drawing the feature.

        """
        # Instantiate an artist to draw the feature and add it to the axes.
        artist = feature_artist.FeatureArtist(feature, **kwargs)
        return self.add_artist(artist)

    def add_geometries(self, geoms, crs, **kwargs):
        """
        Add the given shapely geometries (in the given crs) to the axes.

        Args:

        * geoms:
            A collection of shapely geometries.
        * crs:
            The cartopy CRS in which the provided geometries are defined.

        Kwargs:
            Keyword arguments to be used when drawing this feature.

        Returns:
             A :class:`cartopy.mpl.feature_artist.FeatureArtist`
             instance responsible for drawing the geometries.

        """
        feature = cartopy.feature.ShapelyFeature(geoms, crs, **kwargs)
        return self.add_feature(feature)

    def get_extent(self, crs=None):
        """
        Get the extent (x0, x1, y0, y1) of the map in the given coordinate
        system.

        If no crs is given, the returned extents' coordinate system will be
        the CRS of this Axes.

        """
        p = self._get_extent_geom(crs)
        r = p.bounds
        x1, y1, x2, y2 = r
        return x1, x2, y1, y2

    def _get_extent_geom(self, crs=None):
        # Perform the calculations for get_extent(), which just repackages it.
        with self.hold_limits():
            if self.get_autoscale_on():
                self.autoscale_view()
            [x1, y1], [x2, y2] = self.viewLim.get_points()

        domain_in_src_proj = sgeom.Polygon([[x1, y1], [x2, y1],
                                            [x2, y2], [x1, y2],
                                            [x1, y1]])

        # Determine target projection based on requested CRS.
        if crs is None:
            proj = self.projection
        elif isinstance(crs, ccrs.Projection):
            proj = crs
        else:
            # Attempt to select suitable projection for
            # non-projection CRS.
            if isinstance(crs, ccrs.RotatedGeodetic):
                proj = ccrs.RotatedPole(crs.proj4_params['lon_0'] - 180,
                                        crs.proj4_params['o_lat_p'])
                warnings.warn('Approximating coordinate system {!r} with a '
                              'RotatedPole projection.'.format(crs))
            elif hasattr(crs, 'is_geodetic') and crs.is_geodetic():
                proj = ccrs.PlateCarree(crs.globe)
                warnings.warn('Approximating coordinate system {!r} with the '
                              'PlateCarree projection.'.format(crs))
            else:
                raise ValueError('Cannot determine extent in'
                                 ' coordinate system {!r}'.format(crs))

        # Calculate intersection with boundary and project if necesary.
        boundary_poly = sgeom.Polygon(self.projection.boundary)
        if proj != self.projection:
            # Erode boundary by threshold to avoid transform issues.
            # This is a workaround for numerical issues at the boundary.
            eroded_boundary = boundary_poly.buffer(-self.projection.threshold)
            geom_in_src_proj = eroded_boundary.intersection(
                domain_in_src_proj)
            geom_in_crs = proj.project_geometry(geom_in_src_proj,
                                                self.projection)
        else:
            geom_in_crs = boundary_poly.intersection(domain_in_src_proj)

        return geom_in_crs

    def set_extent(self, extents, crs=None):
        """
        Set the extent (x0, x1, y0, y1) of the map in the given
        coordinate system.

        If no crs is given, the extents' coordinate system will be assumed
        to be the Geodetic version of this axes' projection.

        """
        # TODO: Implement the same semantics as plt.xlim and
        # plt.ylim - allowing users to set None for a minimum and/or
        # maximum value
        x1, x2, y1, y2 = extents
        domain_in_crs = sgeom.polygon.LineString([[x1, y1], [x2, y1],
                                                  [x2, y2], [x1, y2],
                                                  [x1, y1]])

        projected = None

        # Sometimes numerical issues cause the projected vertices of the
        # requested extents to appear outside the projection domain.
        # This results in an empty geometry, which has an empty `bounds`
        # tuple, which causes an unpack error.
        # This workaround avoids using the projection when the requested
        # extents are obviously the same as the projection domain.
        try_workaround = ((crs is None and
                           isinstance(self.projection, ccrs.PlateCarree)) or
                          crs == self.projection)
        if try_workaround:
            boundary = self.projection.boundary
            if boundary.equals(domain_in_crs):
                projected = boundary

        if projected is None:
            projected = self.projection.project_geometry(domain_in_crs, crs)
        try:
            # This might fail with an unhelpful error message ('need more
            # than 0 values to unpack') if the specified extents fall outside
            # the projection extents, so try and give a better error message.
            x1, y1, x2, y2 = projected.bounds
        except ValueError:
            msg = ('Failed to determine the required bounds in projection '
                   'coordinates. Check that the values provided are within '
                   'the valid range (x_limits=[{xlim[0]}, {xlim[1]}], '
                   'y_limits=[{ylim[0]}, {ylim[1]}]).')
            raise ValueError(msg.format(xlim=self.projection.x_limits,
                                        ylim=self.projection.y_limits))
        self.set_xlim([x1, x2])
        self.set_ylim([y1, y2])

    def set_global(self):
        """
        Set the extent of the Axes to the limits of the projection.

        .. note::

            In some cases where the projection has a limited sensible range
            the ``set_global`` method does not actually make the whole globe
            visible. Instead, the most appropriate extents will be used (e.g.
            Ordnance Survey UK will set the extents to be around the British
            Isles.

        """
        self.set_xlim(self.projection.x_limits)
        self.set_ylim(self.projection.y_limits)

    def set_xticks(self, ticks, minor=False, crs=None):
        """
        Set the x ticks.

        Args:

            * ticks - list of floats denoting the desired position of x ticks.

        Kwargs:

            * minor - boolean flag indicating whether the ticks should be minor
                      ticks i.e. small and unlabelled (default is False).

            * crs - An instance of :class:`~cartopy.crs.CRS` indicating the
                    coordinate system of the provided tick values. If no
                    coordinate system is specified then the values are assumed
                    to be in the coordinate system of the projection.
                    Only transformations from one rectangular coordinate system
                    to another rectangular coordinate system are supported.

        .. note::

            This interface is subject to change whilst functionality is added
            to support other map projections.

        """
        # Project ticks if crs differs from axes' projection
        if crs is not None and crs != self.projection:
            if not isinstance(crs, (ccrs._RectangularProjection,
                                    ccrs.Mercator)) or \
                    not isinstance(self.projection,
                                   (ccrs._RectangularProjection,
                                    ccrs.Mercator)):
                raise RuntimeError('Cannot handle non-rectangular coordinate '
                                   'systems.')
            proj_xyz = self.projection.transform_points(crs,
                                                        np.asarray(ticks),
                                                        np.zeros(len(ticks)))
            xticks = proj_xyz[..., 0]
        else:
            xticks = ticks

        # Switch on drawing of x axis
        self.xaxis.set_visible(True)

        return super(GeoAxes, self).set_xticks(xticks, minor)

    def set_yticks(self, ticks, minor=False, crs=None):
        """
        Set the y ticks.

        Args:

            * ticks - list of floats denoting the desired position of y ticks.

        Kwargs:

            * minor - boolean flag indicating whether the ticks should be minor
                      ticks i.e. small and unlabelled (default is False).

            * crs - An instance of :class:`~cartopy.crs.CRS` indicating the
                    coordinate system of the provided tick values. If no
                    coordinate system is specified then the values are assumed
                    to be in the coordinate system of the projection.
                    Only transformations from one rectangular coordinate system
                    to another rectangular coordinate system are supported.

        .. note::

            This interface is subject to change whilst functionality is added
            to support other map projections.

        """
        # Project ticks if crs differs from axes' projection
        if crs is not None and crs != self.projection:
            if not isinstance(crs, (ccrs._RectangularProjection,
                                    ccrs.Mercator)) or \
                    not isinstance(self.projection,
                                   (ccrs._RectangularProjection,
                                    ccrs.Mercator)):
                raise RuntimeError('Cannot handle non-rectangular coordinate '
                                   'systems.')
            proj_xyz = self.projection.transform_points(crs,
                                                        np.zeros(len(ticks)),
                                                        np.asarray(ticks))
            yticks = proj_xyz[..., 1]
        else:
            yticks = ticks

        # Switch on drawing of y axis
        self.yaxis.set_visible(True)

        return super(GeoAxes, self).set_yticks(yticks, minor)

    def stock_img(self, name='ne_shaded'):
        """
        Add a standard image to the map.

        Currently, the only (and default) option is a downsampled version of
        the Natural Earth shaded relief raster.

        """
        if name == 'ne_shaded':
            import os
            source_proj = ccrs.PlateCarree()
            fname = os.path.join(config["repo_data_dir"],
                                 'raster', 'natural_earth',
                                 '50-natural-earth-1-downsampled.png')

            return self.imshow(imread(fname), origin='upper',
                               transform=source_proj,
                               extent=[-180, 180, -90, 90])
        else:
            raise ValueError('Unknown stock image %r.' % name)

    def add_raster(self, raster_source, **slippy_image_kwargs):
        """
        Add the given raster source to the GeoAxes.

        Parameters
        ----------
        raster_source : :class:`cartopy.io.RasterSource` like instance
            ``raster_source`` may be any object which implements the
            RasterSource interface, including instances of objects such as
            :class:`~cartopy.io.ogc_clients.WMSRasterSource` and
            :class:`~cartopy.io.ogc_clients.WMTSRasterSource`. Note that image
            retrievals are done at draw time, not at creation time.

        """
        # Allow a fail-fast error if the raster source cannot provide
        # images in the current projection.
        raster_source.validate_projection(self.projection)
        img = SlippyImageArtist(self, raster_source, **slippy_image_kwargs)
        with self.hold_limits():
            self.add_image(img)
        return img

    def _regrid_shape_aspect(self, regrid_shape, target_extent):
        """
        Helper for setting regridding shape which is used in several
        plotting methods.

        """
        if not isinstance(regrid_shape, collections.Sequence):
            target_size = int(regrid_shape)
            x_range, y_range = np.diff(target_extent)[::2]
            desired_aspect = x_range / y_range
            if x_range >= y_range:
                regrid_shape = (target_size * desired_aspect, target_size)
            else:
                regrid_shape = (target_size, target_size / desired_aspect)
        return regrid_shape

    def imshow(self, img, *args, **kwargs):
        """
        Add the "transform" keyword to :func:`~matplotlib.pyplot.imshow'.

        Parameters
        ----------

        transform : :class:`~cartopy.crs.Projection` or matplotlib transform
            The coordinate system in which the given image is rectangular.
        regrid_shape : int or pair of ints
            The shape of the desired image if it needs to be transformed.
            If a single integer is given then that will be used as the minimum
            length dimension, while the other dimension will be scaled up
            according to the target extent's aspect ratio. The default is for
            the minimum dimension of a transformed image to have length 750,
            so for an image being transformed into a global PlateCarree
            projection the resulting transformed image would have a shape of
            ``(750, 1500)``.
        extent : tuple
            The corner coordinates of the image in the form
            ``(left, right, bottom, top)``. The coordinates should be in the
            coordinate system passed to the transform keyword.
        origin : {'lower', 'upper'}
            The origin of the vertical pixels. See
            :func:`matplotlib.pyplot.imshow` for further details. Default
            is ``'lower'``.

        """
        transform = kwargs.pop('transform', None)
        if 'update_datalim' in kwargs:
            raise ValueError('The update_datalim keyword has been removed in '
                             'imshow. To hold the data and view limits see '
                             'GeoAxes.hold_limits.')

        kwargs.setdefault('origin', 'lower')

        same_projection = (isinstance(transform, ccrs.Projection) and
                           self.projection == transform)

        if transform is None or transform == self.transData or same_projection:
            if isinstance(transform, ccrs.Projection):
                transform = transform._as_mpl_transform(self)
            result = matplotlib.axes.Axes.imshow(self, img, *args, **kwargs)
        else:
            extent = kwargs.pop('extent', None)
            img = np.asanyarray(img)
            if kwargs['origin'] == 'upper':
                # It is implicitly assumed by the regridding operation that the
                # origin of the image is 'lower', so simply adjust for that
                # here.
                img = img[::-1]
                kwargs['origin'] = 'lower'

            if not isinstance(transform, ccrs.Projection):
                raise ValueError('Expected a projection subclass. Cannot '
                                 'handle a %s in imshow.' % type(transform))

            target_extent = self.get_extent(self.projection)
            regrid_shape = kwargs.pop('regrid_shape', 750)
            regrid_shape = self._regrid_shape_aspect(regrid_shape,
                                                     target_extent)
            warp_array = cartopy.img_transform.warp_array
            img, extent = warp_array(img,
                                     source_proj=transform,
                                     source_extent=extent,
                                     target_proj=self.projection,
                                     target_res=regrid_shape,
                                     target_extent=target_extent,
                                     mask_extrapolated=True,
                                     )

            # As a workaround to a matplotlib limitation, turn any images
            # which are RGB with a mask into RGBA images with an alpha
            # channel.
            if (isinstance(img, np.ma.MaskedArray) and
                    img.shape[2:3] == (3, ) and
                    img.mask is not False):
                old_img = img
                img = np.zeros(img.shape[:2] + (4, ), dtype=img.dtype)
                img[:, :, 0:3] = old_img
                # Put an alpha channel in if the image was masked.
                img[:, :, 3] = ~ np.any(old_img.mask, axis=2)
                if img.dtype.kind == 'u':
                    img[:, :, 3] *= 255

            result = matplotlib.axes.Axes.imshow(self, img, *args,
                                                 extent=extent, **kwargs)

        # clip the image. This does not work as the patch moves with mouse
        # movement, but the clip path doesn't
        # This could definitely be fixed in matplotlib
#        if result.get_clip_path() in [None, self.patch]:
#            # image does not already have clipping set, clip to axes patch
#            result.set_clip_path(self.outline_patch)
        return result

    def gridlines(self, crs=None, draw_labels=False, xlocs=None,
                  ylocs=None, **kwargs):
        """
        Automatically adds gridlines to the axes, in the given coordinate
        system, at draw time.

        Kwargs:

        * crs
            The :class:`cartopy._crs.CRS` defining the coordinate system in
            which gridlines are drawn.
            Default is :class:`cartopy.crs.PlateCarree`.

        * draw_labels
            Label gridlines like axis ticks, around the edge.

        * xlocs
            An iterable of gridline locations or a
            :class:`matplotlib.ticker.Locator` instance which will be used to
            determine the locations of the gridlines in the x-coordinate of
            the given CRS. Defaults to None, which implies automatic locating
            of the gridlines.

        * ylocs
            An iterable of gridline locations or a
            :class:`matplotlib.ticker.Locator` instance which will be used to
            determine the locations of the gridlines in the y-coordinate of
            the given CRS. Defaults to None, which implies automatic locating
            of the gridlines.

        Returns:

            A :class:`cartopy.mpl.gridliner.Gridliner` instance.

        All other keywords control line properties.  These are passed through
        to :class:`matplotlib.collections.Collection`.

        """
        if crs is None:
            crs = ccrs.PlateCarree()
        from cartopy.mpl.gridliner import Gridliner
        if xlocs is not None and not isinstance(xlocs, mticker.Locator):
            xlocs = mticker.FixedLocator(xlocs)
        if ylocs is not None and not isinstance(ylocs, mticker.Locator):
            ylocs = mticker.FixedLocator(ylocs)
        gl = Gridliner(
            self, crs=crs, draw_labels=draw_labels, xlocator=xlocs,
            ylocator=ylocs, collection_kwargs=kwargs)
        self._gridliners.append(gl)
        return gl

    def _gen_axes_spines(self, locations=None, offset=0.0, units='inches'):
        # generate some axes spines, as some Axes super class machinery
        # requires them. Just make them invisible
        spines = matplotlib.axes.Axes._gen_axes_spines(self,
                                                       locations=locations,
                                                       offset=offset,
                                                       units=units)
        for spine in spines.values():
            spine.set_visible(False)
        return spines

    def _boundary(self):
        """
        Adds the map's boundary to this GeoAxes, attaching the appropriate
        artists to :data:`.outline_patch` and :data:`.background_patch`.

        .. note::

            The boundary is not the ``axes.patch``. ``axes.patch``
            is made invisible by this method - its only remaining
            purpose is to provide a rectilinear clip patch for
            all Axes artists.

        """
        # Hide the old "background" patch used by matplotlib - it is not
        # used by cartopy's GeoAxes.
        self.patch.set_facecolor((1, 1, 1, 0))
        self.patch.set_edgecolor((0.5, 0.5, 0.5))
        self.patch.set_visible(False)
        self.background_patch = None
        self.outline_patch = None

        path, = cpatch.geos_to_path(self.projection.boundary)

        # Get the outline path in terms of self.transData
        proj_to_data = self.projection._as_mpl_transform(self) - self.transData
        trans_path = proj_to_data.transform_path(path)

        # Set the boundary - we can make use of the rectangular clipping.
        self.set_boundary(trans_path, use_as_clip_path=False)

        # Attach callback events for when the xlim or ylim are changed. This
        # is what triggers the patches to be re-clipped at draw time.
        self.callbacks.connect('xlim_changed', _trigger_patch_reclip)
        self.callbacks.connect('ylim_changed', _trigger_patch_reclip)

    def set_boundary(self, path, transform=None, use_as_clip_path=True):
        """
        Given a path, update the :data:`.outline_patch` and
        :data:`.background_patch` to take its shape.

        Parameters
        ----------

        path : :class:`matplotlib.path.Path`
            The path of the desired boundary.
        transform : None or :class:`matplotlib.transforms.Transform`
            The coordinate system of the given path. Currently this must be
            convertible to data coordinates, and therefore cannot extend beyond
            the limits of the axes' projection.
        use_as_clip_path : bool
            Whether axes.patch should be updated. Updating axes.patch means
            that any artists subsequently created will inherit clipping from
            this path, rather than the standard unit square in axes
            coordinates.

        """
        if transform is None:
            transform = self.transData

        if isinstance(transform, cartopy.crs.CRS):
            transform = transform._as_mpl_transform(self)

        if self.background_patch is None:
            background = matplotlib.patches.PathPatch(path, edgecolor='none',
                                                      facecolor='white',
                                                      zorder=-1, clip_on=False,
                                                      transform=transform)
        else:
            background = matplotlib.patches.PathPatch(path, zorder=-1,
                                                      clip_on=False)
            background.update_from(self.background_patch)
            self.background_patch.remove()
            background.set_transform(transform)

        if self.outline_patch is None:
            outline = matplotlib.patches.PathPatch(path, edgecolor='black',
                                                   facecolor='none',
                                                   zorder=2.5, clip_on=False,
                                                   transform=transform)
        else:
            outline = matplotlib.patches.PathPatch(path, zorder=2.5,
                                                   clip_on=False)
            outline.update_from(self.outline_patch)
            self.outline_patch.remove()
            outline.set_transform(transform)

        # Attach the original path to the patches. This will be used each time
        # a new clipped path is calculated.
        outline.orig_path = path
        background.orig_path = path

        # Attach a "reclip" attribute, which determines if the patch's path is
        # reclipped before drawing. A callback is used to change the "reclip"
        # state.
        outline.reclip = True
        background.reclip = True

        # Add the patches to the axes, and also make them available as
        # attributes.
        self.background_patch = background
        self.outline_patch = outline

        if use_as_clip_path:
            self.patch = background

        with self.hold_limits():
            self.add_patch(outline)
            self.add_patch(background)

    def contour(self, *args, **kwargs):
        """
        Add the "transform" keyword to :func:`~matplotlib.pyplot.contour'.

        Extra kwargs:

            transform - a :class:`~cartopy.crs.Projection`.

        """
        t = kwargs.get('transform', None)
        if t is None:
            t = self.projection
        if isinstance(t, ccrs.CRS) and not isinstance(t, ccrs.Projection):
            raise ValueError('invalid transform:'
                             ' Spherical contouring is not supported - '
                             ' consider using PlateCarree/RotatedPole.')
        if isinstance(t, ccrs.Projection):
            kwargs['transform'] = t._as_mpl_transform(self)
        else:
            kwargs['transform'] = t
        result = matplotlib.axes.Axes.contour(self, *args, **kwargs)

        self.autoscale_view()
        return result

    def contourf(self, *args, **kwargs):
        """
        Add the "transform" keyword to :func:`~matplotlib.pyplot.contourf'.

        Extra kwargs:

            transform - a :class:`~cartopy.crs.Projection`.

        """
        t = kwargs.get('transform', None)
        if t is None:
            t = self.projection
        if isinstance(t, ccrs.CRS) and not isinstance(t, ccrs.Projection):
            raise ValueError('invalid transform:'
                             ' Spherical contouring is not supported - '
                             ' consider using PlateCarree/RotatedPole.')
        if isinstance(t, ccrs.Projection):
            kwargs['transform'] = t = t._as_mpl_transform(self)
        else:
            kwargs['transform'] = t

        # Set flag to indicate correcting orientation of paths if not ccw
        if isinstance(t, mtransforms.Transform):
            for sub_trans, _ in t._iter_break_from_left_to_right():
                if isinstance(sub_trans, InterProjectionTransform):
                    if not hasattr(sub_trans, 'force_path_ccw'):
                        sub_trans.force_path_ccw = True

        result = matplotlib.axes.Axes.contourf(self, *args, **kwargs)

        # We need to compute the dataLim correctly for contours.
        if matplotlib.__version__ >= '1.4':
            extent = mtransforms.Bbox.union([col.get_datalim(self.transData)
                                             for col in result.collections])
            self.dataLim.update_from_data_xy(extent.get_points())

        self.autoscale_view()
        return result

    def scatter(self, *args, **kwargs):
        """
        Add the "transform" keyword to :func:`~matplotlib.pyplot.scatter'.

        Extra kwargs:

            transform - a :class:`~cartopy.crs.Projection`.

        """
        t = kwargs.get('transform', None)
        # Keep this bit - even at mpl v1.2
        if t is None:
            t = self.projection
        if hasattr(t, '_as_mpl_transform'):
            kwargs['transform'] = t._as_mpl_transform(self)

        # exclude Geodetic as a vaild source CS
        if (isinstance(kwargs.get('transform', None),
                       InterProjectionTransform) and
                kwargs['transform'].source_projection.is_geodetic()):
            raise ValueError('Cartopy cannot currently do spherical '
                             'contouring. The source CRS cannot be a '
                             'geodetic, consider using the cyllindrical form '
                             '(PlateCarree or RotatedPole).')

        result = matplotlib.axes.Axes.scatter(self, *args, **kwargs)
        self.autoscale_view()
        return result

    def pcolormesh(self, *args, **kwargs):
        """
        Add the "transform" keyword to :func:`~matplotlib.pyplot.pcolormesh'.

        Extra kwargs:

            transform - a :class:`~cartopy.crs.Projection`.

        """
        t = kwargs.get('transform', None)
        if t is None:
            t = self.projection
        if isinstance(t, ccrs.CRS) and not isinstance(t, ccrs.Projection):
            raise ValueError('invalid transform:'
                             ' Spherical pcolormesh is not supported - '
                             ' consider using PlateCarree/RotatedPole.')
        kwargs.setdefault('transform', t)
        result = self._pcolormesh_patched(*args, **kwargs)
        self.autoscale_view()
        return result

    def _pcolormesh_patched(self, *args, **kwargs):
        """
        A temporary, modified duplicate of
        :func:`~matplotlib.pyplot.pcolormesh'.

        This function contains a workaround for a matplotlib issue
        and will be removed once the issue has been resolved.
        https://github.com/matplotlib/matplotlib/pull/1314

        """
        import warnings
        import numpy as np
        import numpy.ma as ma
        import matplotlib as mpl
        import matplotlib.cbook as cbook
        import matplotlib.colors as mcolors
        import matplotlib.cm as cm
        from matplotlib import docstring
        import matplotlib.transforms as transforms
        import matplotlib.artist as artist
        from matplotlib.artist import allow_rasterization
        import matplotlib.backend_bases as backend_bases
        import matplotlib.path as mpath
        import matplotlib.mlab as mlab
        import matplotlib.collections as mcoll

        if not self._hold:
            self.cla()

        alpha = kwargs.pop('alpha', None)
        norm = kwargs.pop('norm', None)
        cmap = kwargs.pop('cmap', None)
        vmin = kwargs.pop('vmin', None)
        vmax = kwargs.pop('vmax', None)
        shading = kwargs.pop('shading', 'flat').lower()
        antialiased = kwargs.pop('antialiased', False)
        kwargs.setdefault('edgecolors', 'None')

        allmatch = (shading == 'gouraud')

        X, Y, C = self._pcolorargs('pcolormesh', *args, allmatch=allmatch)
        Ny, Nx = X.shape

        # convert to one dimensional arrays
        C = C.ravel()
        X = X.ravel()
        Y = Y.ravel()

        coords = np.zeros(((Nx * Ny), 2), dtype=float)
        coords[:, 0] = X
        coords[:, 1] = Y

        collection = mcoll.QuadMesh(
            Nx - 1, Ny - 1, coords,
            antialiased=antialiased, shading=shading, **kwargs)
        collection.set_alpha(alpha)
        collection.set_array(C)
        if norm is not None:
            assert(isinstance(norm, mcolors.Normalize))
        collection.set_cmap(cmap)
        collection.set_norm(norm)
        collection.set_clim(vmin, vmax)
        collection.autoscale_None()

        self.grid(False)

        # Transform from native to data coordinates?
        t = collection._transform
        if (not isinstance(t, mtransforms.Transform) and
                hasattr(t, '_as_mpl_transform')):
            t = t._as_mpl_transform(self.axes)

        if t and any(t.contains_branch_seperately(self.transData)):
            trans_to_data = t - self.transData
            pts = np.vstack([X, Y]).T.astype(np.float)
            transformed_pts = trans_to_data.transform(pts)
            X = transformed_pts[..., 0]
            Y = transformed_pts[..., 1]

            ########################
            # PATCH
            # XXX Non-standard matplotlib thing.
            no_inf = (X != np.inf) & (Y != np.inf)
            X = X[no_inf]
            Y = Y[no_inf]
            # END OF PATCH
            ##############

        minx = np.amin(X)
        maxx = np.amax(X)
        miny = np.amin(Y)
        maxy = np.amax(Y)

        corners = (minx, miny), (maxx, maxy)
        ########################
        # PATCH
        # XXX Non-standard matplotlib thing.
        collection._corners = mtransforms.Bbox(corners)
        collection.get_datalim = lambda transData: collection._corners
        # END OF PATCH
        ##############

        self.update_datalim(corners)
        self.add_collection(collection)
        self.autoscale_view()

        ########################
        # PATCH
        # XXX Non-standard matplotlib thing.
        # Handle a possible wrap around for rectangular projections.
        t = kwargs.get('transform', None)
        if isinstance(t, ccrs.CRS):
            wrap_proj_types = (ccrs._RectangularProjection,
                               ccrs._WarpedRectangularProjection,
                               ccrs.InterruptedGoodeHomolosine,
                               ccrs.Mercator)
            if isinstance(t, wrap_proj_types) and \
                    isinstance(self.projection, wrap_proj_types):

                C = C.reshape((Ny - 1, Nx - 1))
                transformed_pts = transformed_pts.reshape((Ny, Nx, 2))

                # compute the vertical line angles of the pcolor in
                # transformed coordinates
                with np.errstate(invalid='ignore'):
                    horizontal_vert_angles = np.arctan2(
                        np.diff(transformed_pts[..., 0], axis=1),
                        np.diff(transformed_pts[..., 1], axis=1)
                    )

                # if the change in angle is greater than 90 degrees (absolute),
                # then mark it for masking later on.
                dx_horizontal = np.diff(horizontal_vert_angles)
                to_mask = ((np.abs(dx_horizontal) > np.pi / 2) |
                           np.isnan(dx_horizontal))

                if np.any(to_mask):
                    if collection.get_cmap()._rgba_bad[3] != 0.0:
                        warnings.warn("The colormap's 'bad' has been set, but "
                                      "in order to wrap pcolormesh across the "
                                      "map it must be fully transparent.")

                    # at this point C has a shape of (Ny-1, Nx-1), to_mask has
                    # a shape of (Ny, Nx-2) and pts has a shape of (Ny*Nx, 2)

                    mask = np.zeros(C.shape, dtype=np.bool)

                    # mask out the neighbouring cells if there was a cell
                    # found with an angle change of more than pi/2 . NB.
                    # Masking too much only has a detrimental impact on
                    # performance.
                    to_mask_y_shift = to_mask[:-1, :]
                    mask[:, :-1][to_mask_y_shift] = True
                    mask[:, 1:][to_mask_y_shift] = True

                    to_mask_x_shift = to_mask[1:, :]
                    mask[:, :-1][to_mask_x_shift] = True
                    mask[:, 1:][to_mask_x_shift] = True

                    C_mask = getattr(C, 'mask', None)
                    if C_mask is not None:
                        dmask = mask | C_mask
                    else:
                        dmask = mask

                    # create the masked array to be used with this pcolormesh
                    pcolormesh_data = np.ma.array(C, mask=mask)

                    collection.set_array(pcolormesh_data.ravel())

                    # now that the pcolormesh has masked the bad values,
                    # create a pcolor with just those values that were masked
                    pcolor_data = pcolormesh_data.copy()
                    # invert the mask
                    pcolor_data.mask = ~pcolor_data.mask

                    # remember to re-apply the original data mask to the array
                    if C_mask is not None:
                        pcolor_data.mask = pcolor_data.mask | C_mask

                    pts = pts.reshape((Ny, Nx, 2))
                    if np.any(~pcolor_data.mask):
                        # plot with slightly lower zorder to avoid odd issue
                        # where the main plot is obscured
                        zorder = collection.zorder - .1
                        kwargs.pop('zorder', None)
                        kwargs.setdefault('snap', False)
                        pcolor_col = self.pcolor(pts[..., 0], pts[..., 1],
                                                 pcolor_data, zorder=zorder,
                                                 **kwargs)

                        pcolor_col.set_cmap(cmap)
                        pcolor_col.set_norm(norm)
                        pcolor_col.set_clim(vmin, vmax)
                        # scale the data according to the *original* data
                        pcolor_col.norm.autoscale_None(C)

                        # put the pcolor_col on the pcolormesh collection so
                        # that if really necessary, users can do things post
                        # this method
                        collection._wrapped_collection_fix = pcolor_col

            # Clip the QuadMesh to the projection boundary, which is required
            # to keep the shading inside the projection bounds.
            collection.set_clip_path(self.outline_patch)

        # END OF PATCH
        ##############

        return collection

    def pcolor(self, *args, **kwargs):
        """
        Add the "transform" keyword to :func:`~matplotlib.pyplot.pcolor'.

        Extra kwargs:

            transform - a :class:`~cartopy.crs.Projection`.

        """
        t = kwargs.get('transform', None)
        if t is None:
            t = self.projection
        if isinstance(t, ccrs.CRS) and not isinstance(t, ccrs.Projection):
            raise ValueError('invalid transform:'
                             ' Spherical pcolor is not supported - '
                             ' consider using PlateCarree/RotatedPole.')
        kwargs.setdefault('transform', t)
        result = matplotlib.axes.Axes.pcolor(self, *args, **kwargs)

        # Update the datalim for this pcolor.
        limits = result.get_datalim(self.axes.transData)
        self.axes.update_datalim(limits)

        self.autoscale_view()
        return result

    def quiver(self, x, y, u, v, *args, **kwargs):
        """
        Plot a field of arrows.

        Extra Kwargs:

        * transform: :class:`cartopy.crs.Projection` or matplotlib transform
            The coordinate system in which the vectors are defined.

        * regrid_shape: int or 2-tuple of ints
            If given, specifies that the points where the arrows are
            located will be interpolated onto a regular grid in
            projection space. If a single integer is given then that
            will be used as the minimum grid length dimension, while the
            other dimension will be scaled up according to the target
            extent's aspect ratio. If a pair of ints are given they
            determine the grid length in the x and y directions
            respectively.

        * target_extent: 4-tuple
            If given, specifies the extent in the target CRS that the
            regular grid defined by *regrid_shape* will have. Defaults
            to the current extent of the map projection.

        See :func:`matplotlib.pyplot.quiver` for details on arguments
        and other keyword arguments.

        .. note::

           The vector components must be defined as grid eastward and
           grid northward.

        """
        t = kwargs.get('transform', None)
        if t is None:
            t = self.projection
        if isinstance(t, ccrs.CRS) and not isinstance(t, ccrs.Projection):
            raise ValueError('invalid transform:'
                             ' Spherical quiver is not supported - '
                             ' consider using PlateCarree/RotatedPole.')
        if isinstance(t, ccrs.Projection):
            kwargs['transform'] = t._as_mpl_transform(self)
        else:
            kwargs['transform'] = t
        regrid_shape = kwargs.pop('regrid_shape', None)
        target_extent = kwargs.pop('target_extent',
                                   self.get_extent(self.projection))
        if regrid_shape is not None:
            # If regridding is required then we'll be handling transforms
            # manually and plotting in native coordinates.
            regrid_shape = self._regrid_shape_aspect(regrid_shape,
                                                     target_extent)
            if args:
                # Interpolate color array as well as vector components.
                x, y, u, v, c = vector_scalar_to_grid(
                    t, self.projection, regrid_shape, x, y, u, v, args[0],
                    target_extent=target_extent)
                args = (c,) + args[1:]
            else:
                x, y, u, v = vector_scalar_to_grid(
                    t, self.projection, regrid_shape, x, y, u, v,
                    target_extent=target_extent)
            kwargs.pop('transform', None)
        elif t != self.projection:
            # Transform the vectors if the projection is not the same as the
            # data transform.
            if (x.ndim == 1 and y.ndim == 1) and (x.shape != u.shape):
                x, y = np.meshgrid(x, y)
            u, v = self.projection.transform_vectors(t, x, y, u, v)
        return matplotlib.axes.Axes.quiver(self, x, y, u, v, *args, **kwargs)

    def barbs(self, x, y, u, v, *args, **kwargs):
        """
        Plot a 2-D field of barbs.

        Extra Kwargs:

        * transform: :class:`cartopy.crs.Projection` or matplotlib transform
            The coordinate system in which the vectors are defined.

        * regrid_shape: int or 2-tuple of ints
            If given, specifies that the points where the arrows are
            located will be interpolated onto a regular grid in
            projection space. If a single integer is given then that
            will be used as the minimum grid length dimension, while the
            other dimension will be scaled up according to the target
            extent's aspect ratio. If a pair of ints are given they
            determine the grid length in the x and y directions
            respectively.

        * target_extent: 4-tuple
            If given, specifies the extent in the target CRS that the
            regular grid defined by *regrid_shape* will have. Defaults
            to the current extent of the map projection.

        See :func:`matplotlib.pyplot.barbs` for details on arguments
        and keyword arguments.

        .. note::

           The vector components must be defined as grid eastward and
           grid northward.

        """
        t = kwargs.get('transform', None)
        if t is None:
            t = self.projection
        if isinstance(t, ccrs.CRS) and not isinstance(t, ccrs.Projection):
            raise ValueError('invalid transform:'
                             ' Spherical barbs are not supported - '
                             ' consider using PlateCarree/RotatedPole.')
        if isinstance(t, ccrs.Projection):
            kwargs['transform'] = t._as_mpl_transform(self)
        else:
            kwargs['transform'] = t
        regrid_shape = kwargs.pop('regrid_shape', None)
        target_extent = kwargs.pop('target_extent',
                                   self.get_extent(self.projection))
        if regrid_shape is not None:
            # If regridding is required then we'll be handling transforms
            # manually and plotting in native coordinates.
            regrid_shape = self._regrid_shape_aspect(regrid_shape,
                                                     target_extent)
            if args:
                # Interpolate color array as well as vector components.
                x, y, u, v, c = vector_scalar_to_grid(
                    t, self.projection, regrid_shape, x, y, u, v, args[0],
                    target_extent=target_extent)
                args = (c,) + args[1:]
            else:
                x, y, u, v = vector_scalar_to_grid(
                    t, self.projection, regrid_shape, x, y, u, v,
                    target_extent=target_extent)
            kwargs.pop('transform', None)
        elif t != self.projection:
            # Transform the vectors if the projection is not the same as the
            # data transform.
            if x.ndim == 1 and y.ndim == 1:
                x, y = np.meshgrid(x, y)
            u, v = self.projection.transform_vectors(t, x, y, u, v)
        return matplotlib.axes.Axes.barbs(self, x, y, u, v, *args, **kwargs)

    def streamplot(self, x, y, u, v, **kwargs):
        """
        Draws streamlines of a vector flow.

        Extra Kwargs:

        * transform: :class:`cartopy.crs.Projection` or matplotlib transform
            The coordinate system in which the vector field is defined.

        See :func:`matplotlib.pyplot.streamplot` for details on arguments
        and keyword arguments.

        .. note::

           The vector components must be defined as grid eastward and
           grid northward.

        """
        t = kwargs.pop('transform', None)
        if t is None:
            t = self.projection
        if isinstance(t, ccrs.CRS) and not isinstance(t, ccrs.Projection):
            raise ValueError('invalid transform:'
                             ' Spherical streamplot is not supported - '
                             ' consider using PlateCarree/RotatedPole.')
        # Regridding is required for streamplot, it must have an evenly spaced
        # grid to work correctly. Choose our destination grid based on the
        # density keyword. The grid need not be bigger than the grid used by
        # the streamplot integrator.
        density = kwargs.get('density', 1)
        if np.isscalar(density):
            regrid_shape = [int(30 * density)] * 2
        else:
            regrid_shape = [int(25 * d) for d in density]
        # The color and linewidth keyword arguments can be arrays so they will
        # need to be gridded also.
        c = kwargs.get('color', None)
        l = kwargs.get('linewidth', None)
        scalars = []
        color_array = isinstance(c, np.ndarray)
        linewidth_array = isinstance(l, np.ndarray)
        if color_array:
            scalars.append(c)
        if linewidth_array:
            scalars.append(l)
        # Do the regridding including any scalar fields.
        target_extent = self.get_extent(self.projection)
        gridded = vector_scalar_to_grid(t, self.projection, regrid_shape,
                                        x, y, u, v, *scalars,
                                        target_extent=target_extent)
        x, y, u, v = gridded[:4]
        # If scalar fields were regridded then replace the appropriate keyword
        # arguments with the gridded arrays.
        scalars = list(gridded[4:])
        if linewidth_array:
            kwargs['linewidth'] = scalars.pop()
        if color_array:
            kwargs['color'] = ma.masked_invalid(scalars.pop())
        with warnings.catch_warnings():
            # The workaround for nan values in streamplot colors gives rise to
            # a warning which is not at all important so it is hidden from the
            # user to avoid confusion.
            message = 'Warning: converting a masked element to nan.'
            warnings.filterwarnings('ignore', message=message,
                                    category=UserWarning)
            sp = matplotlib.axes.Axes.streamplot(self, x, y, u, v, **kwargs)
        return sp

    def add_wmts(self, wmts, layer_name, **kwargs):
        """
        Add the specified WMTS layer to the axes.

        This function requires owslib and PIL to work.

        Args:

            * wmts - The URL of the WMTS, or an
                     owslib.wmts.WebMapTileService instance.
            * layer_name - The name of the layer to use.

        All other keywords are passed through to the construction of the
        image artist. See :meth:`~matplotlib.axes.Axes.imshow()` for
        more details.

        """
        from cartopy.io.ogc_clients import WMTSRasterSource
        wmts = WMTSRasterSource(wmts, layer_name)
        return self.add_raster(wmts, **kwargs)

    def add_wms(self, wms, layers, wms_kwargs=None, **kwargs):
        """
        Add the specified WMS layer to the axes.

        This function requires owslib and PIL to work.

        Parameters
        ----------
        wms : string or :class:`owslib.wms.WebMapService` instance
            The web map service URL or owslib WMS instance to use.
        layers : string or iterable of string
            The name of the layer(s) to use.
        wms_kwargs : dict or None
            Passed through to the
            :class:`~cartopy.io.ogc_clients.WMSRasterSource`
            constructor's ``getmap_extra_kwargs`` for defining getmap time
            keyword arguments.

        All other keywords are passed through to the construction of the
        image artist. See :meth:`~matplotlib.axes.Axes.imshow()` for
        more details.

        """
        from cartopy.io.ogc_clients import WMSRasterSource
        wms = WMSRasterSource(wms, layers, getmap_extra_kwargs=wms_kwargs)
        return self.add_raster(wms, **kwargs)


# Define the GeoAxesSubplot class, so that a type(ax) will emanate from
# cartopy.mpl.geoaxes, not matplotlib.axes.
class GeoAxesSubplot(matplotlib.axes.SubplotBase, GeoAxes):
    _axes_class = GeoAxes


try:
    matplotlib.axes._subplots._subplot_classes[GeoAxes] = GeoAxesSubplot
except AttributeError:
    matplotlib.axes._subplot_classes[GeoAxes] = GeoAxesSubplot


def _trigger_patch_reclip(event):
    """
    Defines an event callback for a GeoAxes which forces the outline and
    background patches to be re-clipped next time they are drawn.

    """
    axes = event.axes
    # trigger the outline and background patches to be re-clipped
    axes.outline_patch.reclip = True
    axes.background_patch.reclip = True