This file is indexed.

/usr/lib/python2.7/dist-packages/cartopy/tests/crs/test_azimuthal_equidistant.py is in python-cartopy 0.14.2+dfsg1-2build3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# (C) British Crown Copyright 2015 - 2016, Met Office
#
# This file is part of cartopy.
#
# cartopy is free software: you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the
# Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# cartopy is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with cartopy.  If not, see <https://www.gnu.org/licenses/>.

from __future__ import (absolute_import, division, print_function)

import unittest

import numpy as np
from numpy.testing import assert_almost_equal, assert_array_almost_equal
from nose.tools import assert_equal

import cartopy.crs as ccrs


class TestAzimuthalEquidistant(unittest.TestCase):
    def test_default(self):
        aeqd = ccrs.AzimuthalEquidistant()
        expected = ('+ellps=WGS84 +proj=aeqd +lon_0=0.0 '
                    '+lat_0=0.0 +x_0=0.0 +y_0=0.0 +no_defs')
        assert_equal(aeqd.proj4_init, expected)

        assert_almost_equal(np.array(aeqd.x_limits),
                            [-20037508.34278924, 20037508.34278924], decimal=6)
        assert_almost_equal(np.array(aeqd.y_limits),
                            [-20037508.34278924, 20037508.34278924], decimal=6)

    def test_eccentric_globe(self):
        globe = ccrs.Globe(semimajor_axis=1000, semiminor_axis=500,
                           ellipse=None)
        aeqd = ccrs.AzimuthalEquidistant(globe=globe)
        expected = ('+a=1000 +b=500 +proj=aeqd +lon_0=0.0 +lat_0=0.0 '
                    '+x_0=0.0 +y_0=0.0 +no_defs')
        assert_equal(aeqd.proj4_init, expected)

        assert_almost_equal(np.array(aeqd.x_limits),
                            [-3141.59265359, 3141.59265359], decimal=6)
        assert_almost_equal(np.array(aeqd.y_limits),
                            [-1570.796326795, 1570.796326795], decimal=6)

    def test_eastings(self):
        aeqd_offset = ccrs.AzimuthalEquidistant(false_easting=1234,
                                                false_northing=-4321)

        expected = ('+ellps=WGS84 +proj=aeqd +lon_0=0.0 +lat_0=0.0 '
                    '+x_0=1234 +y_0=-4321 +no_defs')
        assert_equal(aeqd_offset.proj4_init, expected)

        assert_almost_equal(np.array(aeqd_offset.x_limits),
                            [-20036274.34278924, 20038742.34278924], decimal=6)
        assert_almost_equal(np.array(aeqd_offset.y_limits),
                            [-20041829.34278924, 20033187.34278924], decimal=6)

    def test_grid(self):
        # USGS Professional Paper 1395, pp 196--197, Table 30
        globe = ccrs.Globe(ellipse=None,
                           semimajor_axis=1.0, semiminor_axis=1.0)
        aeqd = ccrs.AzimuthalEquidistant(central_latitude=0.0,
                                         central_longitude=0.0,
                                         globe=globe)
        geodetic = aeqd.as_geodetic()

        expected = ('+a=1.0 +b=1.0 +proj=aeqd +lon_0=0.0 +lat_0=0.0 '
                    '+x_0=0.0 +y_0=0.0 +no_defs')
        assert_equal(aeqd.proj4_init, expected)

        assert_almost_equal(np.array(aeqd.x_limits),
                            [-3.14159265, 3.14159265], decimal=6)
        assert_almost_equal(np.array(aeqd.y_limits),
                            [-3.14159265, 3.14159265], decimal=6)

        lats, lons = np.mgrid[0:100:10, 0:100:10]
        result = aeqd.transform_points(geodetic, lons.ravel(), lats.ravel())

        expected_x = np.array([
            [0.00000, 0.17453, 0.34907, 0.52360, 0.69813,
             0.87266, 1.04720, 1.22173, 1.39626, 1.57080],
            [0.00000, 0.17275, 0.34546, 0.51807, 0.69054,
             0.86278, 1.03472, 1.20620, 1.37704, 1.54693],
            [0.00000, 0.16736, 0.33454, 0.50137, 0.66762,
             0.83301, 0.99719, 1.15965, 1.31964, 1.47607],
            [0.00000, 0.15822, 0.31607, 0.47314, 0.62896,
             0.78296, 0.93436, 1.08215, 1.22487, 1.36035],
            [0.00000, 0.14511, 0.28959, 0.43276, 0.57386,
             0.71195, 0.84583, 0.97392, 1.09409, 1.20330],
            [0.00000, 0.12765, 0.25441, 0.37931, 0.50127,
             0.61904, 0.73106, 0.83535, 0.92935, 1.00969],
            [0.00000, 0.10534, 0.20955, 0.31145, 0.40976,
             0.50301, 0.58948, 0.66711, 0.73343, 0.78540],
            [0.00000, 0.07741, 0.15362, 0.22740, 0.29744,
             0.36234, 0.42056, 0.47039, 0.50997, 0.53724],
            [0.00000, 0.04281, 0.08469, 0.12469, 0.16188,
             0.19529, 0.22399, 0.24706, 0.26358, 0.27277],
            [0.00000, 0.00000, 0.00000, 0.00000, 0.00000,
             0.00000, 0.00000, 0.00000, 0.00000, 0.00000],
        ]).ravel()
        assert_almost_equal(result[:, 0], expected_x, decimal=5)

        expected_y = np.array([
            [0.00000, 0.00000, 0.00000, 0.00000, 0.00000,
             0.00000, 0.00000, 0.00000, 0.00000, 0.00000],
            [0.17453, 0.17541, 0.17810, 0.18270, 0.18943,
             0.19859, 0.21067, 0.22634, 0.24656, 0.27277],
            [0.34907, 0.35079, 0.35601, 0.36497, 0.37803,
             0.39579, 0.41910, 0.44916, 0.48772, 0.53724],
            [0.52360, 0.52606, 0.53355, 0.54634, 0.56493,
             0.59010, 0.62291, 0.66488, 0.71809, 0.78540],
            [0.69813, 0.70119, 0.71046, 0.72626, 0.74912,
             0.77984, 0.81953, 0.86967, 0.93221, 1.00969],
            [0.87266, 0.87609, 0.88647, 0.90408, 0.92938,
             0.96306, 1.00602, 1.05942, 1.12464, 1.20330],
            [1.04720, 1.05068, 1.06119, 1.07891, 1.10415,
             1.13733, 1.17896, 1.22963, 1.28993, 1.36035],
            [1.22173, 1.22481, 1.23407, 1.24956, 1.27137,
             1.29957, 1.33423, 1.37533, 1.42273, 1.47607],
            [1.39626, 1.39829, 1.40434, 1.41435, 1.42823,
             1.44581, 1.46686, 1.49104, 1.51792, 1.54693],
            [1.57080, 1.57080, 1.57080, 1.57080, 1.57080,
             1.57080, 1.57080, 1.57080, 1.57080, 1.57080],
        ]).ravel()
        assert_almost_equal(result[:, 1], expected_y, decimal=5)

    def test_sphere_transform(self):
        # USGS Professional Paper 1395, pg 337
        globe = ccrs.Globe(ellipse=None,
                           semimajor_axis=3.0, semiminor_axis=3.0)
        aeqd = ccrs.AzimuthalEquidistant(central_latitude=40.0,
                                         central_longitude=-100.0,
                                         globe=globe)
        geodetic = aeqd.as_geodetic()

        expected = ('+a=3.0 +b=3.0 +proj=aeqd +lon_0=-100.0 +lat_0=40.0 '
                    '+x_0=0.0 +y_0=0.0 +no_defs')
        assert_equal(aeqd.proj4_init, expected)

        assert_almost_equal(np.array(aeqd.x_limits),
                            [-9.42477796, 9.42477796], decimal=6)
        assert_almost_equal(np.array(aeqd.y_limits),
                            [-9.42477796, 9.42477796], decimal=6)

        result = aeqd.transform_point(100.0, -20.0, geodetic)

        assert_array_almost_equal(result, [-5.8311398, 5.5444634])

    def test_ellipsoid_polar_transform(self):
        # USGS Professional Paper 1395, pp 338--339
        globe = ccrs.Globe(ellipse=None, semimajor_axis=6378388.0,
                           flattening=1 - np.sqrt(1 - 0.00672267))
        aeqd = ccrs.AzimuthalEquidistant(central_latitude=90.0,
                                         central_longitude=-100.0,
                                         globe=globe)
        geodetic = aeqd.as_geodetic()

        expected = ('+a=6378388.0 +f=0.003367003355798981 +proj=aeqd '
                    '+lon_0=-100.0 +lat_0=90.0 +x_0=0.0 +y_0=0.0 +no_defs')
        assert_equal(aeqd.proj4_init, expected)

        assert_almost_equal(np.array(aeqd.x_limits),
                            [-20038296.88254529, 20038296.88254529], decimal=6)
        assert_almost_equal(np.array(aeqd.y_limits),
                            # TODO: This is wrong. Globe.semiminor_axis does
                            # not account for flattening.
                            # [-19970827.86969727, 19970827.86969727]
                            [-20038296.88254529, 20038296.88254529], decimal=6)

        result = aeqd.transform_point(5.0, 80.0, geodetic)

        assert_array_almost_equal(result, [1078828.3, 289071.2], decimal=1)

    def test_ellipsoid_guam_transform(self):
        # USGS Professional Paper 1395, pp 339--340
        globe = ccrs.Globe(ellipse=None, semimajor_axis=6378206.4,
                           flattening=1 - np.sqrt(1 - 0.00676866))
        lat_0 = 13 + (28 + 20.87887 / 60) / 60
        lon_0 = 144 + (44 + 55.50254 / 60) / 60
        aeqd = ccrs.AzimuthalEquidistant(central_latitude=lat_0,
                                         central_longitude=lon_0,
                                         false_easting=50000.0,
                                         false_northing=50000.0,
                                         globe=globe)
        geodetic = aeqd.as_geodetic()

        expected = ('+a=6378206.4 +f=0.003390076308689371 +proj=aeqd '
                    '+lon_0=144.7487507055556 +lat_0=13.47246635277778 '
                    '+x_0=50000.0 +y_0=50000.0 +no_defs')
        assert_equal(aeqd.proj4_init, expected)

        assert_almost_equal(np.array(aeqd.x_limits),
                            [-19987726.36931940, 20087726.36931940], decimal=6)
        assert_almost_equal(np.array(aeqd.y_limits),
                            # TODO: This is wrong. Globe.semiminor_axis does
                            # not account for flattening.
                            # [-19919796.94787477, 20019796.94787477]
                            [-19987726.36931940, 20087726.36931940], decimal=6)

        pt_lat = 13 + (20 + 20.53846 / 60) / 60
        pt_lon = 144 + (38 + 7.19265 / 60) / 60
        result = aeqd.transform_point(pt_lon, pt_lat, geodetic)

        # The paper uses an approximation, so we cannot match it exactly,
        # hence, decimal=1, not 2.
        assert_array_almost_equal(result, [37712.48, 35242.00], decimal=1)

    def test_ellipsoid_micronesia_transform(self):
        # USGS Professional Paper 1395, pp 340--341
        globe = ccrs.Globe(ellipse=None, semimajor_axis=6378206.4,
                           flattening=1 - np.sqrt(1 - 0.00676866))
        lat_0 = 15 + (11 + 5.6830 / 60) / 60
        lon_0 = 145 + (44 + 29.9720 / 60) / 60
        aeqd = ccrs.AzimuthalEquidistant(central_latitude=lat_0,
                                         central_longitude=lon_0,
                                         false_easting=28657.52,
                                         false_northing=67199.99,
                                         globe=globe)
        geodetic = aeqd.as_geodetic()

        expected = ('+a=6378206.4 +f=0.003390076308689371 +proj=aeqd '
                    '+lon_0=145.7416588888889 +lat_0=15.18491194444444 '
                    '+x_0=28657.52 +y_0=67199.99000000001 +no_defs')
        assert_equal(aeqd.proj4_init, expected)

        assert_almost_equal(np.array(aeqd.x_limits),
                            [-20009068.84931940, 20066383.88931940], decimal=6)
        assert_almost_equal(np.array(aeqd.y_limits),
                            # TODO: This is wrong. Globe.semiminor_axis does
                            # not account for flattening.
                            # [-19902596.95787477, 20036996.93787477]
                            [-19970526.37931940, 20104926.35931940], decimal=6)

        pt_lat = 15 + (14 + 47.4930 / 60) / 60
        pt_lon = 145 + (47 + 34.9080 / 60) / 60
        result = aeqd.transform_point(pt_lon, pt_lat, geodetic)

        assert_array_almost_equal(result, [34176.20, 74017.88], decimal=2)


if __name__ == '__main__':
    import nose
    nose.runmodule(argv=['-s', '--with-doctest'], exit=False)