This file is indexed.

/usr/lib/python2.7/dist-packages/cartopy/tests/test_line_string.py is in python-cartopy 0.14.2+dfsg1-2build3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# (C) British Crown Copyright 2011 - 2016, Met Office
#
# This file is part of cartopy.
#
# cartopy is free software: you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the
# Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# cartopy is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with cartopy.  If not, see <https://www.gnu.org/licenses/>.

from __future__ import (absolute_import, division, print_function)

import itertools
import time
import unittest

import numpy as np
import shapely.geometry as sgeom

import cartopy.crs as ccrs


class TestLineString(unittest.TestCase):
    def test_out_of_bounds(self):
        # Check that a line that is completely out of the map boundary produces
        # a valid LineString
        projection = ccrs.TransverseMercator(central_longitude=0)

        # For both start & end, define a point that results in well-defined
        # projection coordinates and one that results in NaN.
        start_points = [(86, 0), (130, 0)]
        end_points = [(88, 0), (120, 0)]

        # Try all four combinations of valid/NaN vs valid/NaN.
        for start, end in itertools.product(start_points, end_points):
            line_string = sgeom.LineString([start, end])
            multi_line_string = projection.project_geometry(line_string)
            if start[0] == 130 and end[0] == 120:
                expected = 0
            else:
                expected = 1
            self.assertEqual(len(multi_line_string), expected,
                             'Unexpected line when working from {} '
                             'to {}'.format(start, end))

    def test_simple_fragment_count(self):
        projection = ccrs.PlateCarree()

        tests = [
            ([(150, 0), (-150, 0)], 2),
            ([(10, 0), (90, 0), (180, 0), (-90, 0), (-10, 0)], 2),
            ([(-10, 0), (10, 0)], 1),
            ([(-45, 0), (45, 30)], 1),
        ]

        for coords, pieces in tests:
            line_string = sgeom.LineString(coords)
            multi_line_string = projection.project_geometry(line_string)
            # from cartopy.tests.mpl import show
            # show(projection, multi_line_string)
            self.assertEqual(len(multi_line_string), pieces)

    def test_split(self):
        projection = ccrs.Robinson(170.5)
        line_string = sgeom.LineString([(-10, 30), (10, 60)])
        multi_line_string = projection.project_geometry(line_string)
        # from cartopy.tests.mpl import show
        # show(projection, multi_line_string)
        self.assertEqual(len(multi_line_string), 2)

    def test_out_of_domain_efficiency(self):
        # Check we're efficiently dealing with lines that project
        # outside the map domain.
        # Because the south pole projects to an *enormous* circle
        # (radius ~ 1e23) this will take a *long* time to project if the
        # within-domain exactness criteria are used.
        line_string = sgeom.LineString([(0, -90), (2, -90)])
        tgt_proj = ccrs.NorthPolarStereo()
        src_proj = ccrs.PlateCarree()
        cutoff_time = time.time() + 1
        tgt_proj.project_geometry(line_string, src_proj)
        self.assertLess(time.time(), cutoff_time, 'Projection took too long')


class FakeProjection(ccrs.PlateCarree):
    def __init__(self, left_offset=0, right_offset=0):
        self.left_offset = left_offset
        self.right_offset = right_offset

        self._half_width = 180
        self._half_height = 90
        ccrs.PlateCarree.__init__(self)

    @property
    def boundary(self):
        # XXX Should this be a LinearRing?
        w, h = self._half_width, self._half_height
        return sgeom.LineString([(-w + self.left_offset, -h),
                                 (-w + self.left_offset, h),
                                 (w - self.right_offset, h),
                                 (w - self.right_offset, -h),
                                 (-w + self.left_offset, -h)])


class TestBisect(unittest.TestCase):
    # A bunch of tests to check the bisection algorithm is robust for a
    # variety of simple and/or pathological cases.

    def test_repeated_point(self):
        projection = FakeProjection()
        line_string = sgeom.LineString([(10, 0), (10, 0)])
        multi_line_string = projection.project_geometry(line_string)
        self.assertEqual(len(multi_line_string), 1)
        self.assertEqual(len(multi_line_string[0].coords), 2)

    def test_interior_repeated_point(self):
        projection = FakeProjection()
        line_string = sgeom.LineString([(0, 0), (10, 0), (10, 0), (20, 0)])
        multi_line_string = projection.project_geometry(line_string)
        self.assertEqual(len(multi_line_string), 1)
        self.assertEqual(len(multi_line_string[0].coords), 4)

    def test_circular_repeated_point(self):
        projection = FakeProjection()
        line_string = sgeom.LineString([(0, 0), (360, 0)])
        multi_line_string = projection.project_geometry(line_string)
        self.assertEqual(len(multi_line_string), 1)
        self.assertEqual(len(multi_line_string[0].coords), 2)

    def test_short(self):
        projection = FakeProjection()
        line_string = sgeom.LineString([(0, 0), (1e-12, 0)])
        multi_line_string = projection.project_geometry(line_string)
        self.assertEqual(len(multi_line_string), 1)
        self.assertEqual(len(multi_line_string[0].coords), 2)

    def test_empty(self):
        projection = FakeProjection(right_offset=10)
        line_string = sgeom.LineString([(175, 0), (175, 10)])
        multi_line_string = projection.project_geometry(line_string)
        self.assertEqual(len(multi_line_string), 0)

    def test_simple_run_in(self):
        projection = FakeProjection(right_offset=10)
        line_string = sgeom.LineString([(160, 0), (175, 0)])
        multi_line_string = projection.project_geometry(line_string)
        self.assertEqual(len(multi_line_string), 1)
        self.assertEqual(len(multi_line_string[0].coords), 2)

    def test_simple_wrap(self):
        projection = FakeProjection()
        line_string = sgeom.LineString([(160, 0), (-160, 0)])
        multi_line_string = projection.project_geometry(line_string)
        self.assertEqual(len(multi_line_string), 2)
        self.assertEqual(len(multi_line_string[0].coords), 2)
        self.assertEqual(len(multi_line_string[1].coords), 2)

    def test_simple_run_out(self):
        projection = FakeProjection(left_offset=10)
        line_string = sgeom.LineString([(-175, 0), (-160, 0)])
        multi_line_string = projection.project_geometry(line_string)
        self.assertEqual(len(multi_line_string), 1)
        self.assertEqual(len(multi_line_string[0].coords), 2)

    def test_point_on_boundary(self):
        projection = FakeProjection()
        line_string = sgeom.LineString([(180, 0), (-160, 0)])
        multi_line_string = projection.project_geometry(line_string)
        self.assertEqual(len(multi_line_string), 1)
        self.assertEqual(len(multi_line_string[0].coords), 2)

        # Add a small offset to the left-hand boundary to make things
        # even more pathological.
        projection = FakeProjection(left_offset=5)
        line_string = sgeom.LineString([(180, 0), (-160, 0)])
        multi_line_string = projection.project_geometry(line_string)
        self.assertEqual(len(multi_line_string), 1)
        self.assertEqual(len(multi_line_string[0].coords), 2)

    def test_nan_start(self):
        projection = ccrs.TransverseMercator(central_longitude=-90)
        line_string = sgeom.LineString([(10, 50), (-10, 30)])
        multi_line_string = projection.project_geometry(line_string)
        self.assertEqual(len(multi_line_string), 1)
        for line_string in multi_line_string:
            for coord in line_string.coords:
                self.assertFalse(any(np.isnan(coord)),
                                 'Unexpected NaN in projected coords.')

    def test_nan_end(self):
        projection = ccrs.TransverseMercator(central_longitude=-90)
        line_string = sgeom.LineString([(-10, 30), (10, 50)])
        multi_line_string = projection.project_geometry(line_string)
        # from cartopy.tests.mpl import show
        # show(projection, multi_line_string)
        self.assertEqual(len(multi_line_string), 1)
        for line_string in multi_line_string:
            for coord in line_string.coords:
                self.assertFalse(any(np.isnan(coord)),
                                 'Unexpected NaN in projected coords.')


class TestMisc(unittest.TestCase):
    def test_misc(self):
        projection = ccrs.TransverseMercator(central_longitude=-90)
        line_string = sgeom.LineString([(10, 50), (-10, 30)])
        multi_line_string = projection.project_geometry(line_string)
        # from cartopy.tests.mpl import show
        # show(projection, multi_line_string)
        for line_string in multi_line_string:
            for coord in line_string.coords:
                self.assertFalse(any(np.isnan(coord)),
                                 'Unexpected NaN in projected coords.')

    def test_something(self):
        projection = ccrs.RotatedPole(pole_longitude=177.5,
                                      pole_latitude=37.5)
        line_string = sgeom.LineString([(0, 0), (1e-14, 0)])
        multi_line_string = projection.project_geometry(line_string)
        self.assertEqual(len(multi_line_string), 1)
        self.assertEqual(len(multi_line_string[0].coords), 2)

    def test_global_boundary(self):
        linear_ring = sgeom.LineString([(-180, -180), (-180, 180),
                                        (180, 180), (180, -180)])
        pc = ccrs.PlateCarree()
        merc = ccrs.Mercator()
        multi_line_string = pc.project_geometry(linear_ring, merc)
        assert len(multi_line_string) > 0

        # check the identity transform
        multi_line_string = merc.project_geometry(linear_ring, merc)
        assert len(multi_line_string) > 0


class TestSymmetry(unittest.TestCase):
    @unittest.expectedFailure
    def test_curve(self):
        # Obtain a simple, curved path.
        projection = ccrs.PlateCarree()
        coords = [(-0.08, 51.53), (132.00, 43.17)]  # London to Vladivostock
        line_string = sgeom.LineString(coords)
        multi_line_string = projection.project_geometry(line_string)

        # Compute the reverse path.
        line_string = sgeom.LineString(coords[::-1])
        multi_line_string2 = projection.project_geometry(line_string)

        # Make sure that they generated the same points.
        # (Although obviously they will be in the opposite order!)
        self.assertEqual(len(multi_line_string), 1)
        self.assertEqual(len(multi_line_string2), 1)
        coords = multi_line_string[0].coords
        coords2 = multi_line_string2[0].coords
        np.testing.assert_allclose(coords, coords2[::-1],
                                   err_msg='Asymmetric curve generation')


if __name__ == '__main__':
    unittest.main()