/usr/lib/python2.7/dist-packages/chemfp/search.py is in python-chemfp 1.1p1-2.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 | """Search a FingerprintArena and work with the search results
This module implements the different ways to search a
`FingerprintArena`. The search functions are:
Count the number of hits:
count_tanimoto_hits_fp - search an arena using a single fingerprint
count_tanimoto_hits_arena - search an arena using an arena
count_tanimoto_hits_symmetric - search an arena using itself
partial_count_tanimoto_hits_symmetric - (advanced use; see the doc string)
Find all hits at or above a given threshold, sorted arbitrarily:
threshold_tanimoto_search_fp - search an arena using a single fingerprint
threshold_tanimoto_search_arena - search an arena using an arena
threshold_tanimoto_search_symmetric - search an arena using itself
partial_threshold_tanimoto_search_symmetric - (advanced use; see the doc string)
fill_lower_triangle - copy the upper triangle terms to the lower triangle
Find the k-nearest hits at or above a given threshold, sorted by
decreasing similarity:
knearest_tanimoto_search_fp - search an arena using a single fingerprint
knearest_tanimoto_search_arena - search an arena using an arena
knearest_tanimoto_search_symmetric - search an arena using itself
The threshold and k-nearest search results use a `SearchResult` when
a fingerprint is used as a query, or a `SearchResults` when an arena
is used as a query. These internally use a compressed sparse row format.
"""
import _chemfp
import ctypes
import array
#
__all__ = ["SearchResult", "SearchResults",
"count_tanimoto_hits_fp", "count_tanimoto_hits_arena",
"count_tanimoto_hits_symmetric", "partial_count_tanimoto_hits_symmetric",
"threshold_tanimoto_search_fp", "threshold_tanimoto_search_arena",
"threshold_tanimoto_search_symmetric", "partial_threshold_tanimoto_search_symmetric",
"fill_lower_triangle",
"knearest_tanimoto_search_fp", "knearest_tanimoto_search_arena",
"knearest_tanimoto_search_symmetric"
]
class SearchResult(object):
"""Search results for a query fingerprint against a target arena.
The results contains a list of hits. Hits contain a target index,
score, and optional target ids. The hits can be reordered based on
score or index.
"""
def __init__(self, search_results, row):
self._search_results = search_results
self._row = row
def __len__(self):
"""The number of hits"""
return self._search_results._size(self._row)
def __iter__(self):
"""Iterate through the pairs of (target index, score) using the current ordering"""
return iter(self._search_results._get_indices_and_scores(self._row))
def clear(self):
"""Remove all hits from this result"""
self._search_results._clear_row(self._row)
def get_indices(self):
"""The list of target indices, in the current ordering."""
return self._search_results._get_indices(self._row)
def get_ids(self):
"""The list of target identifiers (if available), in the current ordering"""
ids = self._search_results.target_ids
if ids is None:
return None
return [ids[i] for i in self._search_results._get_indices(self._row)]
def get_scores(self):
"""The list of target scores, in the current ordering"""
return self._search_results._get_scores(self._row)
def get_ids_and_scores(self):
"""The list of (target identifier, target score) pairs, in the current ordering
Raises a TypeError if the target IDs are not available.
"""
ids = self._search_results.target_ids
if ids is None:
raise TypeError("target_ids are not available")
return zip(self.get_ids(), self.get_scores())
def get_indices_and_scores(self):
"""The list of (target index, score) pairs, in the current ordering"""
return self._search_results._get_indices_and_scores(self._row)
def reorder(self, ordering="decreasing-score"):
"""Reorder the hits based on the requested ordering.
The available orderings are:
increasing-score: sort by increasing score
decreasing-score: sort by decreasing score
increasing-index: sort by increasing target index
decreasing-index: sort by decreasing target index
move-closest-first: move the hit with the highest score to the first position
reverse: reverse the current ordering
:param ordering: the name of the ordering to use
"""
self._search_results._reorder_row(self._row, ordering)
def count(self, min_score=None, max_score=None, interval="[]"):
"""Count the number of hits with a score between `min_score` and `max_score`
Using the default parameters this returns the number of
hits in the result.
The default `min_score` of None is equivalent to -infinity.
The default `max_score` of None is equivalent to +infinity.
The `interval` parameter describes the interval end
conditions. The default of "[]" uses a closed interval,
where min_score <= score <= max_score. The interval "()"
uses the open interval where min_score < score < max_score.
The half-open/half-closed intervals "(]" and "[)" are
also supported.
:param min_score: the minimum score in the range.
:type min_score: a float, or None for -infinity
:param max_score: the maximum score in the range.
:type max_score: a float, or None for +infinity
:param interval: specify if the end points are open or closed.
:type interval: one of "[]", "()", "(]", "[)"
:returns: an integer count
"""
return self._search_results._count_row(self._row, min_score, max_score, interval)
def cumulative_score(self, min_score=None, max_score=None, interval="[]"):
"""The sum of the scores which are between `min_score` and `max_score`
Using the default parameters this returns the sum of all of
the scores in the result. With a specified range this returns
the sum of all of the scores in that range. The cumulative
score is also known as the raw score.
The default `min_score` of None is equivalent to -infinity.
The default `max_score` of None is equivalent to +infinity.
The `interval` parameter describes the interval end
conditions. The default of "[]" uses a closed interval,
where min_score <= score <= max_score. The interval "()"
uses the open interval where min_score < score < max_score.
The half-open/half-closed intervals "(]" and "[)" are
also supported.
:param min_score: the minimum score in the range.
:type min_score: a float, or None for -infinity
:param max_score: the maximum score in the range.
:type max_score: a float, or None for +infinity
:param interval: specify if the end points are open or closed.
:type interval: one of "[]", "()", "(]", "[)"
:returns: a floating point value
"""
return self._search_results._cumulative_score_row(self._row, min_score, max_score, interval)
## ??? What does this do?
## @property
## def target_id(self):
## ids = self._search_results.target_ids
## if ids is None:
## return None
## return ids[self._row]
class SearchResults(_chemfp.SearchResults):
"""Search results for a list of query fingerprints against a target arena
This acts like a list of SearchResult elements, with the ability
to iterate over each search results, look them up by index, and
get the number of scores.
In addition, there are helper methods to iterate over each hit and
to get the hit indicies, scores, and identifiers directly as Python
lists, sort the list contents, and more.
"""
def __init__(self, n, arena_ids=None):
"""`n` is the number of SearchResult instances and `arena_ids` the target arena ids
There is one SearchResult for each query fingerprint. The `arena_ids`
are used to map the hit index back to the hit id.
"""
super(SearchResults, self).__init__(n, arena_ids)
self._results = [SearchResult(self, i) for i in xrange(n)]
def __iter__(self):
"""Iterate over each SearchResult hit"""
return iter(self._results)
def __len__(self):
"""The number of rows in the SearchResults"""
return super(SearchResults, self).__len__()
def __getitem__(self, i):
"""Get the 'i'th SearchResult"""
try:
return self._results[i]
except IndexError:
raise IndexError("row index is out of range")
def iter_indices(self):
"""For each hit, yield the list of target indices"""
for i in xrange(len(self)):
yield self._get_indices(i)
def iter_ids(self):
"""For each hit, yield the list of target identifiers"""
ids = self.target_ids
for indicies in self.iter_indices():
yield [ids[idx] for idx in indicies]
def iter_scores(self):
"""For each hit, yield the list of target scores"""
for i in xrange(len(self)):
yield self._get_scores(i)
def iter_indices_and_scores(self):
"""For each hit, yield the list of (target index, score) tuples"""
for i in xrange(len(self)):
yield zip(self._get_indices(i), self._get_scores(i))
def iter_ids_and_scores(self):
"""For each hit, yield the list of (target id, score) tuples"""
ids = self.target_ids
for i in xrange(len(self)):
yield [(ids[idx], score) for (idx, score) in self[i]]
# I don't like how C-level doc strings can't report the call
# signature even though keyword arguments are supported. I also
# don't like maintaining the docstrings in C code.
# Problem solved by interposing these Python methods
def clear_all(self):
"""Remove all hits from all of the search results"""
return super(SearchResults, self).clear_all()
def count_all(self, min_score=None, max_score=None, interval="[]"):
"""Count the number of hits with a score between `min_score` and `max_score`
Using the default parameters this returns the number of
hits in the result.
The default `min_score` of None is equivalent to -infinity.
The default `max_score` of None is equivalent to +infinity.
The `interval` parameter describes the interval end
conditions. The default of "[]" uses a closed interval,
where min_score <= score <= max_score. The interval "()"
uses the open interval where min_score < score < max_score.
The half-open/half-closed intervals "(]" and "[)" are
also supported.
:param min_score: the minimum score in the range.
:type min_score: a float, or None for -infinity
:param max_score: the maximum score in the range.
:type max_score: a float, or None for +infinity
:param interval: specify if the end points are open or closed.
:type interval: one of "[]", "()", "(]", "[)"
:returns: an integer count
"""
return super(SearchResults, self).count_all(min_score, max_score, interval)
def cumulative_score_all(self, min_score=None, max_score=None, interval="[]"):
"""The sum of all scores in all rows which are between `min_score` and `max_score`
Using the default parameters this returns the sum of all of
the scores in all of the results. With a specified range this
returns the sum of all of the scores in that range. The
cumulative score is also known as the raw score.
The default `min_score` of None is equivalent to -infinity.
The default `max_score` of None is equivalent to +infinity.
The `interval` parameter describes the interval end
conditions. The default of "[]" uses a closed interval,
where min_score <= score <= max_score. The interval "()"
uses the open interval where min_score < score < max_score.
The half-open/half-closed intervals "(]" and "[)" are
also supported.
:param min_score: the minimum score in the range.
:type min_score: a float, or None for -infinity
:param max_score: the maximum score in the range.
:type max_score: a float, or None for +infinity
:param interval: specify if the end points are open or closed.
:type interval: one of "[]", "()", "(]", "[)"
:returns: an floating point count
"""
return super(SearchResults, self).cumulative_score_all(min_score, max_score, interval)
def reorder_all(self, order="decreasing-score"):
"""Reorder the hits for all of the rows based on the requested `order`.
The available orderings are:
increasing-score: sort by increasing score
decreasing-score: sort by decreasing score
increasing-index: sort by increasing target index
decreasing-index: sort by decreasing target index
move-closest-first: move the hit with the highest score to the first position
reverse: reverse the current ordering
:param ordering: the name of the ordering to use
"""
return super(SearchResults, self).reorder_all(order)
def _require_matching_fp_size(query_fp, target_arena):
if len(query_fp) != target_arena.metadata.num_bytes:
raise ValueError("query_fp uses %d bytes while target_arena uses %d bytes" % (
len(query_fp), target_arena.metadata.num_bytes))
def _require_matching_sizes(query_arena, target_arena):
assert query_arena.metadata.num_bits is not None, "arenas must define num_bits"
assert target_arena.metadata.num_bits is not None, "arenas must define num_bits"
if query_arena.metadata.num_bits != target_arena.metadata.num_bits:
raise ValueError("query_arena has %d bits while target_arena has %d bits" % (
query_arena.metadata.num_bits, target_arena.metadata.num_bits))
if query_arena.metadata.num_bytes != target_arena.metadata.num_bytes:
raise ValueError("query_arena uses %d bytes while target_arena uses %d bytes" % (
query_arena.metadata.num_bytes, target_arena.metadata.num_bytes))
def count_tanimoto_hits_fp(query_fp, target_arena, threshold=0.7):
"""Count the number of hits in `target_arena` at least `threshold` similar to the `query_fp`
Example::
query_id, query_fp = chemfp.load_fingerprints("queries.fps")[0]
targets = chemfp.load_fingerprints("targets.fps")
print chemfp.search.count_tanimoto_hits_fp(query_fp, targets, threshold=0.1)
:param query_fp: the query fingerprint
:type query_fp: a byte string
:param target_arena: the target arena
:type target_fp: a FingerprintArena
:param threshold: The minimum score threshold.
:type threshold: float between 0.0 and 1.0, inclusive
:returns: an integer count
"""
_require_matching_fp_size(query_fp, target_arena)
# Improve the alignment so the faster algorithms can be used
query_start_padding, query_end_padding, query_fp = _chemfp.align_fingerprint(
query_fp, target_arena.alignment, target_arena.storage_size)
counts = array.array("i", (0 for i in xrange(len(query_fp))))
_chemfp.count_tanimoto_arena(threshold, target_arena.num_bits,
query_start_padding, query_end_padding,
target_arena.storage_size, query_fp, 0, 1,
target_arena.start_padding, target_arena.end_padding,
target_arena.storage_size, target_arena.arena,
target_arena.start, target_arena.end,
target_arena.popcount_indices,
counts)
return counts[0]
def count_tanimoto_hits_arena(query_arena, target_arena, threshold=0.7):
"""For each fingerprint in `query_arena`, count the number of hits in `target_arena` at least `threshold` similar to it
Example::
queries = chemfp.load_fingerprints("queries.fps")
targets = chemfp.load_fingerprints("targets.fps")
counts = chemfp.search.count_tanimoto_hits_arena(queries, targets, threshold=0.1)
print counts[:10]
The result is implementation specific. You'll always be able to
get its length and do an index lookup to get an integer
count. Currently it's a ctype array of longs, but it could be an
array.array or Python list in the future.
:param query_arena: The query fingerprints.
:type query_arena: a FingerprintArena
:param target_arena: The target fingerprints.
:param threshold: The minimum score threshold.
:type threshold: float between 0.0 and 1.0, inclusive
:returns: an array of counts
"""
_require_matching_sizes(query_arena, target_arena)
counts = (ctypes.c_int*len(query_arena))()
_chemfp.count_tanimoto_arena(threshold, target_arena.num_bits,
query_arena.start_padding, query_arena.end_padding,
query_arena.storage_size,
query_arena.arena, query_arena.start, query_arena.end,
target_arena.start_padding, target_arena.end_padding,
target_arena.storage_size,
target_arena.arena, target_arena.start, target_arena.end,
target_arena.popcount_indices,
counts)
return counts
def count_tanimoto_hits_symmetric(arena, threshold=0.7, batch_size=100):
"""For each fingerprint in the `arena`, count the number of other fingerprints at least `threshold` similar to it
A fingerprint never matches itself.
The computation can take a long time. Python won't check check for
a ^C until the function finishes. This can be irritating. Instead,
process only `batch_size` rows at a time before checking for a ^C.
Example::
arena = chemfp.load_fingerprints("targets.fps")
counts = chemfp.search.count_tanimoto_hits_symmetric(arena, threshold=0.2)
print counts[:10]
The result object is implementation specific. You'll always be able to
get its length and do an index lookup to get an integer
count. Currently it's a ctype array of longs, but it could be an
array.array or Python list in the future.
:param arena: the set of fingerprints
:type arena: a FingerprintArena
:param threshold: The minimum score threshold.
:type threshold: float between 0.0 and 1.0, inclusive
:param batch_size: the number of rows to process before checking for a ^C
:type batch_size: integer
:returns: an array of counts
"""
N = len(arena)
counts = (ctypes.c_int * N)()
# This spends the entire time in C, which means ^C won't work until it finishes.
# While it's theoretically slightly higher performance, I can't measure the
# difference, and it's much better to let people be able to interrupt the program.
# _chemfp.count_tanimoto_hits_arena_symmetric(
# threshold, arena.num_bits,
# arena.start_padding, arena.end_padding, arena.storage_size, arena.arena,
# 0, N, 0, N,
# arena.popcount_indices,
# counts)
if batch_size <= 0:
raise ValueError("batch_size must be positive")
# Process N rows at a time, which lets Python handle ^C at times.
# Since the code processes a triangle, this means that early
# on there will be more time between ^C checks than later.
# I'm not able to detect the Python overhead, so I'm not going
# to make it more "efficient".
for query_start in xrange(0, N, batch_size):
query_end = min(query_start + batch_size, N)
_chemfp.count_tanimoto_hits_arena_symmetric(
threshold, arena.num_bits,
arena.start_padding, arena.end_padding, arena.storage_size, arena.arena,
query_start, query_end, 0, N,
arena.popcount_indices,
counts)
return counts
def partial_count_tanimoto_hits_symmetric(counts, arena, threshold=0.7,
query_start=0, query_end=None,
target_start=0, target_end=None):
"""Compute a portion of the symmetric Tanimoto counts
For most cases, use count_tanimoto_hits_symmetric instead of this
function!
This function is only useful for thread-pool implementations. In
that case, set the number of OpenMP threads to 1.
`counts` is a contiguous array of integers. It should be
initialized to zeros, and reused for successive calls.
The function adds counts for counts[query_start:query_end] based
on computing the upper-triangle portion contained in the rectangle
query_start:query_end and target_start:target_end and using
symmetry to fill in the lower half.
You know, this is pretty complicated. Here's the bare minimum
example of how to use it correctly to process 10 rows at a time
using up to 4 threads::
import chemfp
import chemfp.search
from chemfp import futures
import array
chemfp.set_num_threads(1) # Globally disable OpenMP
arena = chemfp.load_fingerprints("targets.fps") # Load the fingerprints
n = len(arena)
counts = array.array("i", [0]*n)
with futures.ThreadPoolExecutor(max_workers=4) as executor:
for row in xrange(0, n, 10):
executor.submit(chemfp.search.partial_count_tanimoto_hits_symmetric,
counts, arena, threshold=0.2,
query_start=row, query_end=min(row+10, n))
print counts
:param counts: the accumulated Tanimoto counts
:type counts: a contiguous block of integer
:param arena: the fingerprints.
:type arena: a FingerprintArena
:param threshold: The minimum score threshold.
:type threshold: float between 0.0 and 1.0, inclusive
:param query_start: the query start row
:type query_start: an integer
:param query_end: the query end row
:type query_end: an integer, or None to mean the last query row
:param target_start: the target start row
:type target_start: an integer
:param target_end: the target end row
:type target_end: an integer, or None to mean the last target row
:returns: nothing
"""
N = len(arena)
if query_end is None:
query_end = N
elif query_end > N:
query_end = N
if target_end is None:
target_end = N
elif target_end > N:
target_end = N
if query_end > len(counts):
raise ValueError("counts array is too small for the given query range")
if target_end > len(counts):
raise ValueError("counts array is too small for the given target range")
_chemfp.count_tanimoto_hits_arena_symmetric(
threshold, arena.num_bits,
arena.start_padding, arena.end_padding, arena.storage_size, arena.arena,
query_start, query_end, target_start, target_end,
arena.popcount_indices,
counts)
# These all return indices into the arena!
def threshold_tanimoto_search_fp(query_fp, target_arena, threshold=0.7):
"""Search for fingerprint hits in `target_arena` which are at least `threshold` similar to `query_fp`
The hits in the returned `SearchResult` are in arbitrary order.
Example::
query_id, query_fp = chemfp.load_fingerprints("queries.fps")[0]
targets = chemfp.load_fingerprints("targets.fps")
print list(chemfp.search.threshold_tanimoto_search_fp(query_fp, targets, threshold=0.15))
:param query_fp: the query fingerprint
:type query_fp: a byte string
:param target_arena: the target arena
:type target_fp: a FingerprintArena
:param threshold: The minimum score threshold.
:type threshold: float between 0.0 and 1.0, inclusive
:returns: a SearchResult
"""
_require_matching_fp_size(query_fp, target_arena)
# Improve the alignment so the faster algorithms can be used
query_start_padding, query_end_padding, query_fp = _chemfp.align_fingerprint(
query_fp, target_arena.alignment, target_arena.storage_size)
results = SearchResults(1, target_arena.arena_ids)
_chemfp.threshold_tanimoto_arena(
threshold, target_arena.num_bits,
query_start_padding, query_end_padding, target_arena.storage_size, query_fp, 0, 1,
target_arena.start_padding, target_arena.end_padding,
target_arena.storage_size, target_arena.arena,
target_arena.start, target_arena.end,
target_arena.popcount_indices,
results, 0)
return results[0]
def threshold_tanimoto_search_arena(query_arena, target_arena, threshold=0.7):
"""Search for the hits in the `target_arena` at least `threshold` similar to the fingerprints in `query_arena`
The hits in the returned `SearchResults` are in arbitrary order.
Example::
queries = chemfp.load_fingerprints("queries.fps")
targets = chemfp.load_fingerprints("targets.fps")
results = chemfp.search.threshold_tanimoto_search_arena(queries, targets, threshold=0.5)
for query_id, query_hits in zip(queries.ids, results):
if len(query_hits) > 0:
print query_id, "->", ", ".join(query_hits.get_ids())
:param query_arena: The query fingerprints.
:type query_arena: a FingerprintArena
:param target_arena: The target fingerprints.
:type target_arena: a FingerprintArena
:param threshold: The minimum score threshold.
:type threshold: float between 0.0 and 1.0, inclusive
:returns: a SearchResults instance
"""
_require_matching_sizes(query_arena, target_arena)
num_queries = len(query_arena)
results = SearchResults(num_queries, target_arena.arena_ids)
if num_queries:
_chemfp.threshold_tanimoto_arena(
threshold, target_arena.num_bits,
query_arena.start_padding, query_arena.end_padding,
query_arena.storage_size, query_arena.arena, query_arena.start, query_arena.end,
target_arena.start_padding, target_arena.end_padding,
target_arena.storage_size, target_arena.arena, target_arena.start, target_arena.end,
target_arena.popcount_indices,
results, 0)
return results
def threshold_tanimoto_search_symmetric(arena, threshold=0.7, include_lower_triangle=True, batch_size=100):
"""Search for the hits in the `arena` at least `threshold` similar to the fingerprints in the arena
When `include_lower_triangle` is True, compute the upper-triangle
similarities, then copy the results to get the full set of
results. When `include_lower_triangle` is False, only compute the
upper triangle.
The computation can take a long time. Python won't check check for
a ^C until the function finishes. This can be irritating. Instead,
process only `batch_size` rows at a time before checking for a ^C.
The hits in the returned `SearchResults` are in arbitrary order.
Example::
arena = chemfp.load_fingerprints("queries.fps")
full_result = chemfp.search.threshold_tanimoto_search_symmetric(arena, threshold=0.2)
upper_triangle = chemfp.search.threshold_tanimoto_search_symmetric(
arena, threshold=0.2, include_lower_triangle=False)
assert sum(map(len, full_result)) == sum(map(len, upper_triangle))*2
:param arena: the set of fingerprints
:type arena: a FingerprintArena
:param threshold: The minimum score threshold.
:type threshold: float between 0.0 and 1.0, inclusive
:param include_lower_triangle:
if False, compute only the upper triangle, otherwise use symmetry to compute the full matrix
:type include_lower_triangle: boolean
:param batch_size: the number of rows to process before checking for a ^C
:type batch_size: integer
:returns: a SearchResults instance
"""
if batch_size <= 0:
raise ValueError("batch_size must be positive")
N = len(arena)
results = SearchResults(N, arena.arena_ids)
if N:
# Break it up into batch_size groups in order to let Python's
# interrupt handler check for a ^C, which is otherwise
# suppressed until the function finishes.
for query_start in xrange(0, N, batch_size):
query_end = min(query_start + batch_size, N)
_chemfp.threshold_tanimoto_arena_symmetric(
threshold, arena.num_bits,
arena.start_padding, arena.end_padding, arena.storage_size, arena.arena,
query_start, query_end, 0, N,
arena.popcount_indices,
results)
if include_lower_triangle:
_chemfp.fill_lower_triangle(results, N)
return results
#def XXXpartial_threshold_tanimoto_search(results, query_arena, target_arena, threshold,
# results_offsets=0):
# pass
def partial_threshold_tanimoto_search_symmetric(results, arena, threshold=0.7,
query_start=0, query_end=None,
target_start=0, target_end=None):
"""Compute a portion of the symmetric Tanimoto search results
For most cases, use threshold_tanimoto_arena_symmetric instead of this
function!
This function is only useful for thread-pool implementations. In
that case, set the number of OpenMP threads to 1.
`results` is a SearchResults instance which is at least as large
as the arena. It should be reused for successive updates.
The function adds hits to results[query_start:query_end] based
on computing the upper-triangle portion contained in the rectangle
query_start:query_end and target_start:target_end.
It does not fill in the lower triangle. To get the full matrix,
call `fill_lower_triangle`.
You know, this is pretty complicated. Here's the bare minimum
example of how to use it correctly to process 10 rows at a time
using up to 4 threads::
import chemfp
import chemfp.search
from chemfp import futures
import array
chemfp.set_num_threads(1)
arena = chemfp.load_fingerprints("targets.fps")
n = len(arena)
results = chemfp.search.SearchResults(n, arena.ids)
with futures.ThreadPoolExecutor(max_workers=4) as executor:
for row in xrange(0, n, 10):
executor.submit(chemfp.search.partial_threshold_tanimoto_search_symmetric,
results, arena, threshold=0.2,
query_start=row, query_end=min(row+10, n))
chemfp.search.fill_lower_triangle(results)
The hits in the `SearchResults` are in arbitrary order.
:param counts: the intermediate search results
:type counts: a SearchResults instance
:param arena: the fingerprints.
:type arena: a FingerprintArena
:param threshold: The minimum score threshold.
:type threshold: float between 0.0 and 1.0, inclusive
:param query_start: the query start row
:type query_start: an integer
:param query_end: the query end row
:type query_end: an integer, or None to mean the last query row
:param target_start: the target start row
:type target_start: an integer
:param target_end: the target end row
:type target_end: an integer, or None to mean the last target row
:returns: nothing
"""
assert arena.popcount_indices
N = len(arena)
if query_end is None:
query_end = N
elif query_end > N:
query_end = N
if target_end is None:
target_end = N
elif target_end > N:
target_end = N
if query_end > N:
raise ValueError("counts array is too small for the given query range")
if target_end > N:
raise ValueError("counts array is too small for the given target range")
if N:
_chemfp.threshold_tanimoto_arena_symmetric(
threshold, arena.num_bits,
arena.start_padding, arena.end_padding, arena.storage_size, arena.arena,
query_start, query_end, target_start, target_end,
arena.popcount_indices,
results)
def fill_lower_triangle(results):
"""Duplicate each entry of `results` to its transpose
This is used after the symmetric threshold search to turn the
upper-triangle results into a full matrix.
"""
_chemfp.fill_lower_triangle(results, len(results))
# These all return indices into the arena!
def knearest_tanimoto_search_fp(query_fp, target_arena, k=3, threshold=0.7):
"""Search for `k`-nearest hits in `target_arena` which are at least `threshold` similar to `query_fp`
The hits in the `SearchResults` are ordered by decreasing similarity score.
Example::
query_id, query_fp = chemfp.load_fingerprints("queries.fps")[0]
targets = chemfp.load_fingerprints("targets.fps")
print list(chemfp.search.knearest_tanimoto_search_fp(query_fp, targets, k=3, threshold=0.0))
:param query_fp: the query fingerprint
:type query_fp: a byte string
:param target_arena: the target arena
:type target_fp: a FingerprintArena
:param k: the number of nearest neighbors to find.
:type k: positive integer
:param threshold: The minimum score threshold.
:type threshold: float between 0.0 and 1.0, inclusive
:returns: a SearchResult
"""
_require_matching_fp_size(query_fp, target_arena)
query_start_padding, query_end_padding, query_fp = _chemfp.align_fingerprint(
query_fp, target_arena.alignment, target_arena.storage_size)
if k < 0:
raise ValueError("k must be non-negative")
results = SearchResults(1, target_arena.arena_ids)
_chemfp.knearest_tanimoto_arena(
k, threshold, target_arena.num_bits,
query_start_padding, query_end_padding, target_arena.storage_size, query_fp, 0, 1,
target_arena.start_padding, target_arena.end_padding,
target_arena.storage_size, target_arena.arena, target_arena.start, target_arena.end,
target_arena.popcount_indices,
results, 0)
_chemfp.knearest_results_finalize(results, 0, 1)
return results[0]
def knearest_tanimoto_search_arena(query_arena, target_arena, k=3, threshold=0.7):
"""Search for the `k` nearest hits in the `target_arena` at least `threshold` similar to the fingerprints in `query_arena`
The hits in the `SearchResults` are ordered by decreasing similarity score.
Example::
queries = chemfp.load_fingerprints("queries.fps")
targets = chemfp.load_fingerprints("targets.fps")
results = chemfp.search.knearest_tanimoto_search_arena(queries, targets, k=3, threshold=0.5)
for query_id, query_hits in zip(queries.ids, results):
if len(query_hits) >= 2:
print query_id, "->", ", ".join(query_hits.get_ids())
:param query_arena: The query fingerprints.
:type query_arena: a FingerprintArena
:param target_arena: The target fingerprints.
:type target_arena: a FingerprintArena
:param k: the number of nearest neighbors to find.
:type k: positive integer
:param threshold: The minimum score threshold.
:type threshold: float between 0.0 and 1.0, inclusive
:returns: a SearchResults instance
"""
_require_matching_sizes(query_arena, target_arena)
num_queries = len(query_arena)
results = SearchResults(num_queries, target_arena.arena_ids)
_chemfp.knearest_tanimoto_arena(
k, threshold, target_arena.num_bits,
query_arena.start_padding, query_arena.end_padding,
query_arena.storage_size, query_arena.arena, query_arena.start, query_arena.end,
target_arena.start_padding, target_arena.end_padding,
target_arena.storage_size, target_arena.arena, target_arena.start, target_arena.end,
target_arena.popcount_indices,
results, 0)
_chemfp.knearest_results_finalize(results, 0, num_queries)
return results
def knearest_tanimoto_search_symmetric(arena, k=3, threshold=0.7, batch_size=100):
"""Search for the `k`-nearest hits in the `arena` at least `threshold` similar to the fingerprints in the arena
The computation can take a long time. Python won't check check for
a ^C until the function finishes. This can be irritating. Instead,
process only `batch_size` rows at a time before checking for a ^C.
The hits in the `SearchResults` are ordered by decreasing similarity score.
Example::
arena = chemfp.load_fingerprints("queries.fps")
results = chemfp.search.knearest_tanimoto_search_symmetric(arena, k=3, threshold=0.8)
for (query_id, hits) in zip(arena.ids, results):
print query_id, "->", ", ".join(("%s %.2f" % hit) for hit in hits.get_ids_and_scores())
:param arena: the set of fingerprints
:type arena: a FingerprintArena
:param k: the number of nearest neighbors to find.
:type k: positive integer
:param threshold: The minimum score threshold.
:type threshold: float between 0.0 and 1.0, inclusive
:param include_lower_triangle:
if False, compute only the upper triangle, otherwise use symmetry to compute the full matrix
:type include_lower_triangle: boolean
:param batch_size: the number of rows to process before checking for a ^C
:type batch_size: integer
:returns: a SearchResults instance
"""
N = len(arena)
if batch_size <= 0:
raise ValueError("batch_size must be positive")
results = SearchResults(N, arena.arena_ids)
if N:
# Break it up into batch_size groups in order to let Python's
# interrupt handler check for a ^C, which is otherwise
# suppressed until the function finishes.
for query_start in xrange(0, N, batch_size):
query_end = min(query_start + batch_size, N)
_chemfp.knearest_tanimoto_arena_symmetric(
k, threshold, arena.num_bits,
arena.start_padding, arena.end_padding, arena.storage_size, arena.arena,
query_start, query_end, 0, N,
arena.popcount_indices,
results)
_chemfp.knearest_results_finalize(results, 0, N)
return results
|