/usr/lib/python-escript/esys/downunder/magtel1d.py is in python-escript 5.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 | # -*- coding: utf-8 -*-
##############################################################################
#
# Copyright (c) 2015 by University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################
from __future__ import print_function, division
__copyright__="""Copyright (c) 2015 by University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"
"""
Some models for flow
:var __author__: name of author
:var __copyright__: copyrights
:var __license__: licence agreement
:var __url__: url entry point on documentation
:var __version__: version
:var __date__: date of the version
"""
__author__="Ralf Schaa, r.schaa@uq.edu.au"
import sys
import numpy
import cmath
class MT_1D(object):
"""
Calculates the electromagnetic fields in the subsurface for a 1D layered earth.
Partly based on Fortran code by Phil Wannamaker in MT2D
(http://marineemlab.ucsd.edu/Projects/Occam/2DMT/index.html)
"""
def __init__(self, freq, depths, rho, zcoord):
"""
DESCRIPTION:
-----------
Constructor which initialises the 1D magnetotelluric class:
(*) check for argument type
(*) check for valid argument values
(*) initialises required data lists
ARGUMENTS:
----------
param freq :: sounding frequency
type freq :: ``float``
param depths :: layer depth interfaces
type depths :: ``list`` (number)
param rho :: layer resistivities
type rho :: ``list`` (number)
param zcoord :: sample coordinate points
type zcoord :: ``list`` (number)
DATA ATTRIBUTES:
---------------
self.f = freq :: sounding frequency
self.z = zcoord :: sample coordinate points
self.zl = zl :: layer depths
self.dl = dl :: layer thicknesses
self.rl = rl :: layer resistivities
"""
# ---
# Check input types:
# ---
#make python3 compatible, since long disappeared in python 3
if sys.version_info[0] == 3:
long_type = int
else:
long_type = long
if not isinstance(freq, (int,long_type,float) ):
raise ValueError("Input parameter FREQ must be a number")
if not isinstance(depths, list) or not all(isinstance(d,(int,long_type,float)) for d in depths):
raise ValueError("Input parameter DEPTHS must be a list of numbers")
if not isinstance(rho, list) or not all(isinstance(d,(int,long_type,float)) for d in rho):
raise ValueError("Input parameter RHO must be a list of numbers")
if not isinstance(zcoord, list) or not all(isinstance(d,(int,long_type,float)) for d in zcoord):
raise ValueError("Input parameter ZCOORD must be a list of numbers")
# ---
# Check valid input values:
# ---
if not freq > 0:
raise ValueError("Input parameter FREQ must be larger than 0")
if not all(x>y for x, y in zip(depths, depths[1:])):
raise ValueError("Input parameter DEPTHS must be all strictly decreasing")
if not len(depths) > 1:
raise ValueError("Input parameter DEPTHS must have more than 1 element")
if not len(rho) == len(depths)-1:
raise ValueError("Input parameter RHO must be exactly the size of DEPTHS minus 1")
if not all(x>0 for x in rho):
raise ValueError("Input parameter RHO must be all positive")
if not all(x<y for x, y in zip(zcoord, zcoord[1:])):
raise ValueError("Input parameter ZCOORD must be all strictly increasing")
# ---
# Now initialise the required lists for mt1d
# ---
# Setup layer thicknesses from interface coordinates.
dl = []
for i in range(0,len(depths)-1):
# Don't include air-layer:
if rho[i] < 1.0e+10:
dl.append( abs(depths[i+1] - depths[i]) )
# Setup list for cumulative layer depths:
zl = [0] * (len(dl)) ; zl[0] = dl[0]
if len(dl)-1 >=1:
for n in range(1,len(dl)):
zl[n] = zl[n-1] + dl[n]
# Setup resistivity list without air-layer.
rl = list(rho)
if rl[0] > 1.0e+10:
rl.pop(0)
# ---
# initialise all required variables as data attributes
# ---
self.f = freq
self.z = zcoord
self.zl = zl
self.dl = dl
self.rl = rl
#__________________________________________________________________________________________________
def mt1d(self):
"""
DESCRIPTION:
-----------
Public method to calculate the MT-1D EM-fields at sample coordinates.
USES:
-----
self.f :: sounding frequency
self.z :: sample coordinate points
self.zl :: layer depths
self.dl :: layer thicknesses
self.rl :: layer resistivities
"""
# Compute the transmission & reflection coefficients;
an, rn = self.__coeff(self.f, self.dl, self.rl)
# Number of evaluation sample points:
nz = len(self.z)
# Initialise output arrays.
te = numpy.zeros( nz, dtype=complex )
tm = numpy.zeros( nz, dtype=complex )
# Calculate the fields at the sample points:
for i in range( nz ):
z = self.z[i]
te[i], tm[i] = self.__field(z, an, rn, self.f, self.zl, self.dl, self.rl)
#<Note>: return reverse list -> [::-1] so that the first value is the bottom value:
return te[::-1], tm[::-1]
#__________________________________________________________________________________________________
def __coeff(self, f, dl, rl):
"""
DESCRIPTION:
-----------
Computes the transmission and reflection coefficients.
Based on Wannamaker's subroutine 'COAMP' in 'MT2D'
ARGUMENTS:
-----------
f :: sounding frequency.
dl :: layer thicknesses.
rl :: layer resistivities.
"""
# ---
# Initialise (return) lists for coefficients.
# ---
# Number of layers.
nl = len(rl)
# Transmission and Reflection coefficients "an" and "rn"
an = [ complex(0.0,00) ]*(nl)
rn = [ complex(0.0,00) ]*(nl)
# ---
# Constant values.
# ---
pi = cmath.pi # Ratio of circle circumference to it's diameter.
ra = 1.0e+14 # Resistivity of air.
mu = 4*pi*1e-7 # Free space permeability.
w = 2*pi*f # Angular frequency.
wm = w*mu # Shortcut of product.
# ---
# Calculate intrinsic wave numbers <quasi-static>.
# ---
# Wave number of air:
k0 = cmath.sqrt( -1j*wm/ra )
# Cycle layers and compute wave numbers of other layers:
k = [None]*nl
for i in range(nl):
k[i] = cmath.sqrt( -1j*wm/rl[i] )
# ---
# Reflection & transmission coefficients for half-space.
# ---
# Half-space case:
if nl == 1:
an[0] = 2*k0/(k[0] + k0) # = 1+Ro
rn[0] = (k0 - k[0])/(k0 + k[0])
# All done, return the coefficients.
return an, rn
# ---
# Prepare calculations for layers.
# ---
# Initialise lists for computed values with complex zeros.
arg = [ complex(0.0,00) ]*(nl-1)
exp = [ complex(0.0,00) ]*(nl-1)
ex2 = [ complex(0.0,00) ]*(nl-1)
tnh = [ complex(0.0,00) ]*(nl-1)
# Setup arguments for the exponential for each layer..
# .. and compute the tanh function and also exp(-2kh).
for j in range(nl-1):
arg[j] = 1j*k[j]*dl[j]
tnh[j]= cmath.tanh(arg[j])
# Save also exponentials for coefficient calculations later:
exp[j] = cmath.exp( -arg[j] )
ex2[j] = exp[j]*exp[j]
# ---
# Reflection & transmission coefficients for layers.
# ---
#<Note>: Following section is based on the formulae by Wannamaker's code.
# Initialise recursion with intrinsic impedance of basement.
zn = wm/k[nl-1]
# Compute the reflection coefficients for all sub-surface layers..
# ..start the loop at the basement and cycle up to the first layer:
for j in range(nl-1,0,-1):
# Wave impedance of next layer-up:
zu = wm/k[j-1]
# Ratio of layer impedances of current-layer and layer-up::
rn[j] = (zn - zu)/(zn + zu)
# New apparent impedance for up-layer via Wait's formula:
zn = zu*(zn + zu*tnh[j-1])/(zu + zn*tnh[j-1])
# <Note>: "zn" is the surface impedance when finishing the loop.
# For the first sub-surface layer, we also ..
# ..have to mind the air-layer at index '0':
zu = wm/k0 ; rn[0] = (zn - zu)/(zn + zu)
# Transmission coefficient of first layer takes into account air-layer:
an[0] = (1+rn[0]) / (1+rn[1]*ex2[0]) # exp[0]*
#<Note>: Wannamaker does not multiply with exp!
# And now compute the transmission coefficients for rest of the layers:
if (nl-1) > 1:
for n in range(1,nl-1):
#<Note>: Wannamaker uses num: ~ exp[n-1]!
num = (1+rn[n] )*exp[n-1]
den = (1+rn[n+1]*ex2[n])
an[n] = an[n-1]*num/den
# And mind the basement as well (numerator is 1):
an[nl-1] = an[nl-2]*exp[nl-2]*(1+rn[nl-1])
# Return the coefficients.
return an, rn
#__________________________________________________________________________________________________
def __field(self, z, an, rn, f, zl, dl, rl):
"""
DESCRIPTION:
-----------
Computes the electric and magnetic field for 1D-MT.
Based on Wannamaker's subroutine 'ZLFLD' in 'MT2D'
ARGUMENTS:
-----------
z :: sample coordinate
an :: transmission coefficients
rn :: reflection coefficients
f :: sounding frequency.
zl :: layer depths
dl :: layer thicknesses
rl :: layer resistivities
"""
# ---------------------------------------------------------------------------------------------
# Initialisations.
# ---------------------------------------------------------------------------------------------
# Number of layers.
nl = len(rl)
# Return values.
ex = complex(0.0, 0.0)
hy = complex(0.0, 0.0)
# Constant values.
pi = cmath.pi # Ratio of circle circumference to it's diameter.
ra = 1.0e+14 # Resistivity of air.
mu = 4*pi*1e-7 # Free space permeability.
w = 2*pi*f # Angular frequency.
wm = w*mu # Shortcut of product.
# ---------------------------------------------------------------------------------------------
# Calculate intrinsic wave numbers <quasi-static>.
# ---------------------------------------------------------------------------------------------
# Free space wave number & amplitude factor of E-field:
k0 = cmath.sqrt( -1j*wm*1/ra )
e0 = wm/(2*k0)
# Cycle layers and compute wave numbers of other layers:
k = [None]*nl
for i in range(nl):
k[i] = cmath.sqrt( -1j*wm/rl[i] )
# ---------------------------------------------------------------------------------------------
# Air-layer EM fields.
# ---------------------------------------------------------------------------------------------
if z < 0:
# Compute the argument and fields.
kz = 1j*k0*z
ex = e0*cmath.exp(-kz)*(1+rn[0]*cmath.exp(2*kz))
hy = e0*cmath.exp(-kz)*(1-rn[0]*cmath.exp(2*kz))*(k0/wm)
# All done, leave.
return ex, hy
# ---------------------------------------------------------------------------------------------
# Uniform half-space EM fields.
# ---------------------------------------------------------------------------------------------
if nl == 1:
# Compute the argument and fields; <Note>:z<0.
kz = 1j*k[0]*z
ex = e0*an[0]*cmath.exp(-kz)
hy = e0*an[0]*cmath.exp(-kz)*(k[0]/wm)
# All done, leave.
return ex, hy
# ---------------------------------------------------------------------------------------------
# Layered half-space EM fields.
# ---------------------------------------------------------------------------------------------
if nl > 1:
# First get the layer index for the current
# depth 'z' via cycling over layer depths:
n = 0
for i in range(1,nl):
if z > zl[i-1]:
n = i
# This handles the case when 'z' is in the basement layer (no reflection):
if n == nl-1:
# Compute the fields.
kh = 1j*k[n]*(z-zl[n-1])
ex = e0*an[n]*cmath.exp(-kh)
hy = e0*an[n]*cmath.exp(-kh)*(k[n]/wm)
# All done, leave.
return ex, hy
else: # Other layers:
# Compute the fields.
kh = 1j*k[n]*(z-zl[n])
kd = 1j*k[n]*dl[n]
exp = cmath.exp(-kh)
aex = cmath.exp(-kd)
ex = e0*an[n]*(exp + rn[n+1]/exp)*aex
hy = e0*an[n]*(exp - rn[n+1]/exp)*aex*(k[n]/wm)
# All done, leave.
return ex, hy
return ex, hy
#__________________________________________________________________________________________________
|